

Chemical and isotopic composition of groundwaters and their seasonal variability at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil

D.K. Nordstrom¹, J.A.T. Smellie², M. Wolf³

- ¹ U.S. Geological Survey
- ² Conterra AB
- ³ GSF-Institut für Hydrologie

1990

SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19

NAGRANTB 90 - 24SKBTR90 - 15UK DOEWR90 - 046

Poços de Caldas Report No. 6

Chemical and isotopic composition of groundwaters and their seasonal variability at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil

An international project with the participation of Brazil, Sweden (SKB), Switzerland (NAGRA), United Kingdom (UK DOE) and USA (US DOE). The project is managed by SKB, Swedish Nuclear Fuel and Waste Management Co. CHEMICAL AND ISOTOPIC COMPOSITION OF GROUNDWATERS AND THEIR SEASONAL VARIABILITY AT THE OSAMU UTSUMI MINE AND MORRO DO FERRO ANALOGUE STUDY SITES, POÇOS DE CALDAS, BRAZIL

D. K. Nordstrom¹ J. A. T. Smellie² M. Wolf³

¹U.S. Geological Survey ²Conterra AB ³GSF-Institut für Hydrologie

1990

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB.

Chemical and isotopic composition of groundwaters and their seasonal variability at the Osamu Utsumi and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.

D.K. NORDSTROM¹, J.A.T. SMELLIE² and M. WOLF³.

¹U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (U.S.A.). ²Conterra AB, Box 493, 751 06 Uppsala (Sweden).

³GSF – Institut für Hydrologie, Ingolstädter Landstrasse 1, D-8042 Neuherberg (Germany).

Abstract

Groundwaters and a few surface waters were collected over a period of 3 years from two natural analogue sites near Poços de Caldas, Brazil: the Osamu Utsumi uranium mine and the Morro do Ferro thorium/rare-earth deposit. These were analysed for major constituents, several trace elements, tritium, deuterium and ¹⁸O, to provide hydrochemical data for the modelling objectives as defined within the natural analogue study programme. The groundwaters are a K-Fe-SO₄ type, which classifies them as a highly unusual composition related to the weathering of a hydrothermally altered, mineralised complex of volcanic to sub-volcanic phonolites.

A subset of selected constituents (Fe(II), Fe(total), SO₄, pH, Eh, alkalinity, F and U) was monitored to gain detailed information on the seasonal variability. Seasonal patterns were only apparent from the very shallow groundwater data, but a trend of continuously increasing dissolved solids for the furthest down-gradient sampling point in deep groundwater indicates a growing plume of water affected by pyrite oxidation but without the residual acidity. Tritium and stable isotope measurements indicate that all groundwaters are of meteoric origin and are not affected significantly by evaporation or by water-rock interactions. Recharging groundwaters at both study sites demonstrate infiltration of water of less than about 35 years in age, whereas deep groundwaters are below 1 TU (tritium unit) but still contain detectable tritium in most cases. These deeper groundwaters may be interpreted as being 35-60 or more years in age, resulting mainly from an admixture of younger with older groundwaters and/or indicating the influence of subsurface-produced tritium.

Zusammenfassung

Während drei Jahren wurden an den zwei Untersuchungsgeländen für natürliche Analoga, der Osamu Utsumi Uranmine und dem Morro do Ferro Thorium/Seltene Erden Lager von Poços de Caldas, Brasilien, Grundwasser- und teilweise auch Oberflächen-Diese Proben wurden auf ihre**n** Gehalt wasserproben entnommen. an Hauptbestandteilen, verschiedenen Spurenelementen, Tritium, Deuterium und ¹⁸O untersucht. Ziel dieser Untersuchungen war es, hydrochemische Daten für Modellierverfahren, wie sie im Rahmen natürlicher Analogstudien definiert werden, bereitzustellen. Die Grundwasserproben sind vom Typ K-Fe-SO4, und damit von höchst ungewöhnlicher Zusammensetzung auf die Verwitterung eines hydrothermal veränderten, mineralisierten Komplexes von vulkanischen bis sub-vulkanischen Phonoliten.

Eine Auswahl von Lösungsparametern wie (Fe[II], Fe[total], SO₄, pH, Eh, Alkalinität, F und U) wurden verfolgt, um Aufschluss über ihr saisonal bedingtes Verhalten zu erlangen. Saisonale Verhaltensmuster waren nur aus den Daten von oberflächennahem Grundwasser ersichtlich; dagegen zeigt das Tiefengrundwasser aus der tiefstgelegenen Probenstelle eine kontinuierliche Zunahme an gelösten Feststoffen und deutet damit auf eine wachsende Ausbreitungszone von Grundwasser, das durch Pyritoxidation verändert aber membralisiert wurde. Tritium, Deuterium und ¹⁸O-Messungen zeigen, dass alle Grundwässer meteorischen Ursprungs sind und unbedeutend beeinflusst werden durch Verdunstung oder durch Wasser/Gestein-Wechselwirkungen. Grundwässer an beiden Untersuchungsstellen lassen auf Infiltration vor weniger als ungefähr 35 Jahren schliessen, während Tiefengrundwässer unter 1 TU liegen aber in den meisten Fällen noch nachweisbare Spuren von Tritium enthalten. Diese Tiefengrundwässer sind wahrscheinlich 35 - 60 oder mehr Jahre alt und resultieren meist aus einer Mischung von jüngerem mit älterem Grundwasser und/oder weisen auf den Einfluss von unterirdisch produziertem Tritium hin.

Résumé

Des échantillons d'eaux souterraines et de quelques eaux de surface ont été prélevés durant une période de 3 années sur deux sites d'étude d'analogies naturelles proches de Poços de Caldas au Brésil: la mine d'uranium d'Osamu Utsumi et le gisement de thorium/terres rares de Morro do Ferro. Ces eaux ont été analysées pour déterminer ses constituants principaux, divers éléments traces, le tritium, deuterium et ¹⁸O, afin de fournir les données hydrochimiques nécessaires pour les objectifs de modélisation fixés par le programme d'étude des analogies naturelles. Les eaux souterraines sont du type K-Fe-SO₄. Ce type fort inhabituel est dû à l'érosion d'un massif de phonolites volcaniques et subvolcanique ayant subi une phase hydrothermale.

Un sous-ensemble d'une sélection de paramètres (Fe[II], Fe[total], SO₄, pH, Eh, alcalinité, F et U) a été suivi afin d'obtenir des informations quant aux variations saisonnières. Des effets saisonniers ne sont apparus que dans d'aquifères peu profonds. On note par contre une tendance à une augmentation régulière de la concentration en solides dissous dans les eaux souterraines les plus profondes, ce qui démontre l'existence d'un panache croissant d'eau affectée par l'oxydation de la pyrite, mais sans acidité résiduelle. Les mesures de tritium et d'isotopes stables montrent que toutes les eaux souterraines sont d'origine météorique et qu'elles ne sont pas affectées de façon significative par l'évaporation ou une interaction eau/roche. L'alimentation des eaux souterraines des deux sites révèle des eaux d'infiltration d'un âge inférieur à 35 ans environ, alors que les eaux souterraines profondes présentent moins de 1 TU (unité tritium) mais contiennent néanmoins dans la plupart des cas des quantités de tritium détectables. On peut interprêter ces eaux souterraines plus profondes comme ayant un âge de 35 à 60 ans ou plus, résultant principalement d'eaux jeunes mélange des eaux souterraines plus anciennes et/ou indiquant l'influence d'une production souterraine de tritium.

Preface

The Poços de Caldas Project was designed to study processes occurring in a natural environment which contains many features of relevance for the safety assessment of radioactive waste disposal. The study area, in the State of Minas Gerais, Brazil, is a region of high natural radioactivity associated with volcanic rocks, geothermal springs and uranium ore deposits. It contains two sites of particular interest on which the project work was focussed: the Osamu Utsumi uranium mine and the Morro do Ferro thorium/rare-earth ore body. The first site is notable in particular for the prominent redox fronts contained in the rock, while Morro do Ferro was already well-known as one of the most naturally radioactive locations on the surface of the Earth, owing to the high thorium ore grade and the shallow, localised nature of the deposit.

The features displayed by these two sites presented the opportunity to study a number of issues of concern in repository performance assessment. The four objectives set after the first-year feasibility study were:

- 1. Testing of equilibrium thermodynamic codes and their associated databases used to evaluate rock/water interactions and solubility/speciation of elements.
- 2. Determining interactions of natural groundwater colloids with radionuclides and mineral surfaces, with emphasis on their role in radionuclide transport processes.
- 3. Producing a model of the evolution and movement of redox fronts, with the additional aim of understanding long-term, large-scale movements of trace elements and rare-earths over the front (including, if possible, natural Pu and Tc).
- 4. Modelling migration of rare-earths (REE) and U-Th series radionuclides during hydrothermal activity similar to that anticipated in the very near-field of some spent-fuel repositories.

The project ran for three and a half years from June 1986 until December 1989 under the joint sponsorship of SKB (Sweden), NAGRA (Switzerland), the Department of the Environment (UK) and the Department of Energy (USA), with considerable support from a number of organisations in Brazil, notably Nuclebrás (now Urânio do Brasil). The first-year feasibility study was followed by two and a half years of data collection and interpretation, focussed on the four objectives above. This report is one of a series of 15, summarising the technical aspects of the work and presenting the background data. A complete list of reports is given below. Those in series A present data and interpretations of the sites, while those in series B present the results of modelling the data with performance assessment objectives in mind. The main findings of the project are presented in a separate summary (no. 15).

The work presented in this report is a compilation of hydrochemical data to: a) characterise the groundwaters, b) appraise the seasonal influences of precipitation and c) provide representative datasets to assess geochemical models.

Poços de Caldas Project Report Series

Series A: Data, Descriptive, Interpretation

Report No.	Topic	Authors (Lead in Capitals)
1.	The regional geology, mineralogy and geochemistry of the Poços de Caldas alkaline caldera complex, Minas Gerais, Brazil.	SCHORSCHER, Shea.
2.	Mineralogy, petrology and geochemistry of the Poços de Caldas analogue study sites, Minas Gerais, Brazil. I: Osamu Utsumi uranium mine.	WABER, Schorscher, Peters.
3.	Mineralogy, petrology and geochemistry of the Poços de Caldas analogue study sites, Minas Gerais, Brazil. II: Morro do Ferro.	WABER.
4.	Isotopic geochemical characterization of selected nepheline syenites and phonolites from the Poços de Caldas alkaline complex, Minas Gerais, Brazil.	SHEA.
5.	Geomorphological and hydrogeological features of the Poços de Caldas caldera and the Osamu Utsumi mine and Morro do Ferro analogue study sites, Brazil.	HOLMES, Pitty, Noy.
6.	Chemical and isotopic composition of groundwaters and their seasonal variability at the Osamu Utsumi and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	NORDSTROM, Smellie, Wolf.
7.	Natural radionuclide and stable element studies of rock samples from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	MacKENZIE, Scott, Linsalata, Miekeley, Osmond, Curtis.
8.	Natural series radionuclide and rare-earth element geo- chemistry of waters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	MIEKELEY, Coutinho de Jesus, Porto da Silveira, Linsalata, Morse, Osmond.

Report No.	Торіс	Authors (Lead in Capitals)
9.	Chemical and physical characterisation of suspended particles and colloids in waters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	MIEKELEY, Coutinho de Jesus, Porto da Silveira, Degueldre.
10.	Microbiological analysis at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	WEST, Vialta, McKinley.

Series B: Predictive Modelling and Performance Assessment

11.	Testing of geochemical models in the Poços de Caldas analogue study.	BRUNO, Cross, Eikenberg, McKinley, Read, Sandino, Sellin.
12.	Testing models of redox front migration and geo- chemistry at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	Ed: McKINLEY, Cross, Haworth, Lichtner, MacKenzie, Moreno, Neretnieks, Nordstrom, Read, Romero, Scott, Sharland, Tweed.
13.	Near-field high-temperature transport: Evidence from the genesis of the Osamu Utsumi uranium mine, Poços de Caldas alkaline complex, Brazil.	CATHLES, Shea.
14.	Geochemical modelling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil.	NORDSTROM, Puigdomènech, McNutt.

Summary Report

15. The Poços de Caldas Project: Summary and implications for radioactive waste management.

CHAPMAN, McKinley, Shea, Smellie.

Contents

		page
Abstra	ct	v
FICIAC	5	
1.	Introduction	1
2.	Field locations and borehole descriptions	1
3.	Sampling and analytical protocols	5
3.1	Sampling protocol	5
3.2	Analytical protocol	8
4.	Evaluation of groundwater data	11
5.	General hydrochemical characteristics	13
6.	Tritium, deuterium and ¹⁸ O results	16
7.	Long-term monitoring results and seasonal patterns	22
8.	Conclusions	22
9.	Acknowledgements	25
10.	References	26

APPENDICES:

Groundwater analysis conducted by the CIPC/Urânio			
do Brasil Control Laboratory, Osamu Utsumi mine			
complex, Poços de Caldas, Minas Gerais, Brazil	27		
Chemical analyses of groundwater samples from the			
Osamu Utsumi mine and Morro do Ferro study sites	33		
Selected analytical results of groundwater samples			
from the Osamu Utsumi mine and Morro do Ferro			
study sites	55		
Results from long-term monitoring for detection of			
seasonal patterns	83		
	Groundwater analysis conducted by the CIPC/Urânio do Brasil Control Laboratory, Osamu Utsumi mine complex, Poços de Caldas, Minas Gerais, Brazil Chemical analyses of groundwater samples from the Osamu Utsumi mine and Morro do Ferro study sites Selected analytical results of groundwater samples from the Osamu Utsumi mine and Morro do Ferro study sites Results from long-term monitoring for detection of seasonal patterns		

1. Introduction

The Poços de Caldas Natural Analogue Project was initiated to determine and assess the hydrobiogeochemical processes that affect the mobility of naturally-occurring radionuclides in crystalline bedrock comprising both oxidised, weathered material and reduced unweathered material. A fundamental aspect of the investigations was to determine the chemical and isotopic composition of the groundwaters at the Osamu Utsumi mine and Morro do Ferro sites. The geology, mineralogy and petrology of these sites is described by Schorscher and Shea; Waber *et al.*; Waber and Shea (this report series; Reps. 1–4). Groundwaters were obtained from boreholes located near points of recharge and discharge so that changes in chemical composition could be assessed as a function of residence time along a flow-path.

The main objective of the hydrochemical investigations was to obtain representative chemical analyses of the groundwaters for (1) classifying the chemical types of groundwaters that characterise the sites, (2) appraising the influence of seasonal precipitation on groundwater chemistry and (3) providing basic chemical data that can be used to assess geochemical models.

This report contains the raw chemical analyses obtained from laboratories in Brazil, the United Kingdom and the United States, as well as the final selected values from inter-laboratory comparisons. Monitoring data on Fe(II), Fe(total), SO₄, pH, Eh, alkalinity, F, U and rainfall are provided in the form of time plots to show the seasonal trends. The discussion contains a description of how the samples were collected and analysed, how final values were selected, the types of groundwaters and the seasonal effects.

2. Field locations and borehole descriptions

The groundwater sampling locations are indicated in Figures 1-3. At the Osamu Utsumi mine (Figs. 1 and 2), boreholes F1, F2, F3 and F5 (mine locations respectively 9-1WC11, 9-1VC24, 9-1NH47 and MI55) were positioned at different depths along the general hydraulic gradient which approximates the old valley floor profile. Boreholes F1 at 125.71 m depth, F2 at 60 m depth, F3 at 77.6 m depth and F5 at 300 m depth were respectively positioned so as to intercept groundwaters of deep to intermediate origin. Some limited use was also made of the shaft (40 m depth) located adjacent to F3 and F5 and much further down-gradient from F1 and F2.

AI : Vertical profiles in are-body A

Figure 1. Osamu Utsumi mine showing the main geological subdivisions, the borehole locations, the groundwater sampling points and the surface exposure rock sampling profiles.

Figure 2. Cross-section of the Osamu Utsumi mine (section ABC; Fig. 1) showing borehole locations, redox fronts, mineralised zones, groundwater reference sampling points and general direction of groundwater flow.

Figure 3. Cross-section of Morro do Ferro showing the borehole locations in relation to the mineralisation and the simulated groundwater flow gradients.

MORRO DO FERRO

The nature of the near-surface, shallow groundwater was obtained from sampling three auxiliary boreholes (10–15 m in depth): SW01 and SW02 characterised by oxidised, non-mineralised bedrock and borehole SW03 located in a reduced, mineralised bedrock environment. Surface water was collected from a supply dam adjacent to the mine complex. Another reference sampling point, chosen to gauge the recharge groundwaters entering from the mine periphery, is represented by piezometer station 22 (Fig. 1) which is artesian in nature.

At Morro do Ferro (Fig. 3) four sampling points exist, all located within the same zone of magnetite breccia (contained by two massive magnetite dykes) which is considered to represent the most hydraulically conductive part of the mountain. This ensures that the same groundwater flow gradient is intercepted by all four sampling points.

Boreholes MF10 and MF11 are located at the entrance of the gallery; MF10 at 74 m collects groundwater at approx. 40 mbgl (metres below groundwater level) and MF11 at 40 m samples groundwater near the top of the water-table (approx. 10 mbgl). Down-gradient, near the south stream, borehole MF12 at 71 m collects groundwater at approx. 65 mbgl. MF13 was drilled up-gradient from MF12, but due to difficulties with borehole completion it is contaminated with recharge water.

Although emphasis is being placed on samples from the drilled boreholes, other localities within and outside Morro do Ferro and the Osamu Utsumi mine have also been sampled to achieve a wider perspective for groundwater interpretation. These localities include surface streams, lakes and seepage areas.

3. Sampling and analytical protocols

3.1. Sampling protocol

Two sampling programmes were initiated:

- (1) approximately year-round weekly sampling for selected constituents (Fe(II), Fe(total), pH, Eh, SO₄, HCO₃, U, F). Later in the programme Na, K, DO and COD were added.
- (2) seasonal sampling four times a year (wet and dry seasons and transitional periods) for complete major and trace element analyses. Additional samples for colloid and microbiological studies were collected in parallel.

During rotary-drilling operations there is always the possibility of groundwater contamination resulting from the flushing fluid and later, when the borehole is complete, from open-hole effects. Contamination and excess oxidation influencing an otherwise reducing groundwater were minimised by transporting artesian groundwater expected to be of a similarly reducing character by tanker from the old saturated subterranean gallery system in the mine (i.e. the shaft sampling location) and using it as a flushing medium during drilling. Initially the water was kept under nitrogen in the tanker, but subsequent periodic Eh measurements indicated that this was not necessary because of the very slow rate of oxidation. To keep any possible effects to a minimum, the tanker was emptied of residual water and refilled twice daily. To minimise open-hole effects, all boreholes (with the exception of the shallow boreholes SW01-SW03) were completed as soon as the geophysical logging and hydraulic testing had been successfully carried out.

At Morro do Ferro, borehole MF10 was initially drilled to 60 m employing a simple dry-pushing method using a short barrel (50 cm in length); the final 14 m were water-flush-drilled. Boreholes MF11 and MF13 were drilled to 40 m and 60 m respectively without water-flushing. Borehole MF12 was initially rotary-drilled to 38.64 m using mud-flushing, and then to its maximum depth of 71 m using water-flushing. Unfortunately, because of flooding at the Osamu Utsumi mine during the drilling of these holes, access to the subterranean gallery system to pump the artesian water for flushing purposes at Morro do Ferro was not possible. Water was therefore collected from a surface-accumulated dam situated at the periphery of the mine and transported to the drilling site. This water was oxidising and some animal-derived nitrate contamination was also detected. However, it was felt that the groundwater flow through Morro do Ferro was sufficiently rapid to have flushed out the holes after some weeks.

With the exception of the shaft and piezometer station 22 (which are continuously artesian) and, to some extent, borehole F1 (which was artesian from November 1986 to June 1987), pumping was necessary to sample groundwaters. This may have been a source of problems because the borehole water remained static between sampling campaigns and changes in composition could have been expected. Controlled pumping experiments conducted at the two sites established an optimum time of 2 hours before the groundwater was considered to be representative, and thereby suitable for sampling (Table I). This was also confirmed by groundwater monitoring using the flow-through cell unit.

TABLE I

Time (mins)	HCO3 (mg/L)	SO4 (mg/L)	Fe ²⁺ (mg/L)	Fe(tot) (mg/L)	pН
Borehole F	1				
0	12.7	15.0	1.10	1.24	5.76
5	9.89	15.0	1.21	1.28	5.56
30	9.89	15.0	1.27	1.32	5.59
30	9.28	16.8	1.16	1.22	5.62
Borehole F.	2				
0	13.4	17.4	0.57	0.63	5.66
8	12.7	19.6	1.00	1.11	5.74
25	12.7	16.0	1.11	1.19	5.74
30	12.7	14.6	1.11	1.18	5.77
30	12.7	16.0	1.10	1.16	5.81
105	15.5	15.0	0.99	1.04	6.06

Variation in groundwater composition during pumping tests from boreholes F1 and F2, Osamu Utsumi mine, Poços de Caldas.

Analysis carried out at Urânio do Brasil, Poços de Caldas.

Routine sampling was carried out twice-weekly at the mine and weekly at Morro do Ferro. After ensuring a representative groundwater composition (2 hours pumping and pH and Eh monitoring using a portable unit) and on-site filtering (0.45 μ m) and preservation (if necessary) with HCl, the samples were transported directly to the laboratory at the mine complex.

Monitoring of the groundwaters was carried out during a 3–5 day period, alternating between all boreholes. Using a flow-through cell unit, pH, Eh (platinum and carbon electrodes), dissolved oxygen, sulphide content, temperature and conductivity were measured. A groundwater flow-rate of 250–400 ml/min was maintained throughout the monitoring period and chemical stability of the water was usually achieved after 2–3 hours.

Although the duration of monitoring at each borehole was on average 4 days, extended monitoring was carried out if the groundwater chemistry showed any major perturbations that might be of importance, e.g. any response to heavy rainfall, etc.

In addition to the routine sampling and monitoring, large groundwater samples were collected from each location on a seasonal basis. These were filtered and/or preserved within 3–4 hours of collection. Depending on the requirements of the analysis, samples

were distributed as unfiltered and unpreserved (i.e. for stable isotope and tritium determinations), filtered through 0.45 μ m membranes and unpreserved (i.e. for major ions and cations), filtered and preserved with HCl (1%) conc. (i.e. for trace element determinations and Fe(II/III) determinations) and filtered, preserved and concentrated by evaporation (i.e. for the determination of uranium, its daughter decay products, thorium and rare-earth elements (REEs).

Filtering, concentration and general handling of the groundwater samples can influence the trace element contents. For filtering purposes a plastic (plexiglass) barrel filter unit was used.

The sampled groundwaters were collected, stored and transported in plastic containers. These were normally acid-washed and rinsed at least three times with deionised water. Care was taken to minimise the number of times waters were transferred from one container to another, which may have led to a steady depletion of those trace elements which are likely to adhere to the sides of the container, e.g. REEs.

For REEs, U, Th and some Cl, Br and Zr analyses, preconcentration of 40 litres of groundwater to 500 ml was needed. Due to the high Si content, especially in the mine waters, silica precipitation occurs on evaporation. Whether co-precipitation of other groundwater constituents also occurs is largely unknown; as a precaution Si was redissolved for the determination of REEs, U and Th.

3.2. Analytical protocol

The elements analysed, the responsible laboratory, the levels of detection and the sample preparation required are listed in Table II. A few samples were sent to a U.S.G.S. research laboratory in Menlo Park, California, for selected major and trace element determinations.

Element	Analytical Method	Detection Limit	Laboratory	Analytical Programme	Sample Preparation
		(mg/L)		-	-
Ca	ICP	0.05	BGS	Major	Filtered; unpreserved
	AA	0.05	CENA	Major	
Mg	ICP	0.14	BGS	Major	Filtered; unpreserved
	AA	0.05	CENA	Major	
Sr	ICP	0.001	BGS	Major	Filtered; preserved
	AA	0.003	CENA	Major	
Ba	ICP	0.001	BGS	Major	Filtered; preserved
	AA	0.05	CENA	Major	
Na	ICP	0.05	BGS	Major	Filtered; unpreserved
	FP	0.1	NUCL	Routine	
К	ICP	0.5	BGS	Major	Filtered; unpreserved
	FP	0.1	NUCL	Routine	
Li	ICP	0.015	BGS	Major	Filtered; unpreserved
Fe(II)	COLOR	0.1	NUCL	Routine	Filtered; preserved
Fe(tot)	ICP	0.02	BGS	Major	Filtered; preserved
	AA	0.01	CENA	Major	_
	COLOR	0.1	NUCL	Routine	
AI	ICP	0.1	BGS	Major	Filtered: preserved
	AA	0.01	CENA	Major	•
Mn	ICP	0.004	BGS	Major	Filtered; preserved
	AA	0.02	CENA	Major	· •
Zn	ICP	0.33	BGS	Major	Filtered; preserved
	AA	0.02	CENA	Major	, •
Cd	ICP	0.024	BGS	Major	Filtered; preserved
	AA	0.02	CENA	Major	
Cu	ICP	0.043	BGS	Major	Filtered; preserved
	AA	0.02	CENA	Major	
Cr	ICP	0.12	BGS	Major	Filtered; preserved
	AA	0.05	CENA	Major	
Co	ICP	0.035	BGS	Maior	Filtered: preserved
Ni	ICP	0.085	BGS	Maior	Filtered: preserved
	AA	0.02	CENA	Maior	· · · · / ·
Mo	ICP	0.6	BGS	Major	Filtered: preserved
4σ	AA	0.02	CENA	Maior	Filtered: preserved
- s Ph	AA	0.10	CENA	Major	Filtered: preserved
SO4	IC	0.5	BGS	Major	Filtered: preserved
.04	N	1.0	NUCL	Routine	, p
7		0.1	BGS	Major	Filtered: preserved
	ISF	0.1	NUCL	Routine	r morou, proservou
וי	IC	0.1	BGS	Major	Filtered unpreserved*
		0.05	BGS	Major	Filtered unpreserved*
		0.05	BGS	Maior	Filtered unpreserved
		0.1	BGS	Major	Filtered unpreserved
2		0.1	CENA	Major	Filtered nreserved
ر 		0.01		Major	The states of the second
ν:Ω.	11 12	11 1 2	KI-N	TO POLICIE DA	HILFFART INTERCOTION

TABLE IIAnalytical protocol for the Poços de Caldas groundwaters.

(continued)

Element	Analytical Method	Detection Limit (mg/L)	Laboratory	Analytical Programme	Sample Preparation
	т	0.5	BCS	Major	Filtered: unpreserved
HCO3	I T	0.5	NUCI	Routine	Thered, impreserved
7.	ICP	0.045	BCS	Maior	Filtered: preserved
		0.045	BCS	Major	Filtered: preserved*
La		0.052	DCS NVII	Major	Filtered: preserved*
		0.018	NIC	Major	Filtered: preserved*
C -	ICP	0.018	NVII	Major	Filtered: preserved*
се "		0.008	DUC	Major	Filtered: preserved*
		0.008	NVU	Major	Filtered: preserved*
rr "		0.008		Major	Filtered: preserved*
NTJ		0.008	NVU	Major	Filtered: preserved*
Na.		0.008	NIC NIC	Major	Filtered: preserved*
0		0.008	NVII	Major	Filtered: preserved*
5m		0.010		Major	Filtered: preserved*
	ICP	0.010	NVII	Major	Filtered: preserved*
0	a-spec	0.008	NIU	Major	Filtered, preserved*
-	a-spec		PUC	Major	Filtered, preserved
	a-spec		FSU	Major Deutice	Filtered: preserved
" 	F	0.0000	NUCL	Kouline	Filtered, preserved*
Th	a-spec	0.0023	NIU	Major	Filtered, preserved
	a-spec	0.0023	PUC	Major	Filtered; preserved
" 18	a-spec		FSU	Major	Filtered; preserved
¹⁰ O 2	mass spec		GSF	Major	Unfiltered; unpreserved
*H 3	mass spec		GSF	Major	Unintered; unpreserved
Ч	LSC/E	0.7 TU	GSF	Major	Unfiltered; unpreserved
Ч	GC/E	0.1 TU	GSF	Major	Unfiltered; unpreserved

TABLE II (continuation)Analytical protocol for the Poços de Caldas groundwaters.

NOTE: Filtering was carried out using a pore diameter of 0.45 µm and HCl was used for sample preservation.

Samples preconcentrated for analysis are denoted by (*).

ICP – Inductively-Coupled Plasma	
Atomic Emission Spectroscopy	T – Titration
AA – Atomic Absorption	FP – Flame Photometry
ISE – Ion Selective Electrode	COLOR – Colorimetry
N – Nephelometry	F – Fluorimetry
mass spec – Mass Spectrometry	IC – Ion Chromatography
a-spec – Alpha Spectrometry	
LSC/E - Liquid Scintillation Counting v	vith Electrolytic Enrichment
GC/E - Gas Counting with Electrolytic	Enrichment

- BGS British Geological Survey, Nottingham, U.K.
- CENA Centro de Energie Nuclear na Agricultura, Piracicaba, Brazil.
- NUCL Laboratory for Seepage and Groundwater Control, Urânio do Brasil, Poços de Caldas, Brazil.
- NYU University of New York, Institute of Environmental Medicine, New York, U.S.A.
- PUC Pontifical Catholic University of Rio de Janeiro, Department of Chemistry, Brazil.
- FSU University of Tallahassee, Department of Geology, Florida, U.S.A.
- GSF Gesellschaft für Strahlen- und Umweltforschung, Institut für Hydrologie, Neuherberg, Germany.

4. Evaluation of groundwater data

The following criteria have been used to evaluate the complete water analyses (those with all major ions) and to select the best values for chemical equilibrium computations:

- 1. Charge imbalances should be less than 30%. In all but one instance it was possible to reduce charge imbalances to less than 20% by careful evaluation of the data.
- Inter-laboratory comparisons (between BGS, CENA, USGS and Uranio do Brasil). Sometimes numbers were averaged, sometimes one value was selected in preference to another, based on the reliability of the analytical method or other factors listed below.
- 3. Chemical behaviour of the elements. For example, conservative elements vary similarly to other conservative elements and redox-sensitive elements should behave in recognisable patterns, etc.
- 4. Geochemical consistency. Constituents that are known to produce patterns which reflect solubility controls should not be supersaturated by orders of magnitude without good cause. Likewise, rock composition and mineralogical occurrence and properties should have a recognisable relationship with water composition. Also, if a grossly anomalous value in a time series from a single borehole occurs, which cannot be explained by some anomalous hydrologic phenomenon, then it is likely to be in error.

Very often it is not the occurrence of any one of these criteria alone that suggests an error, but agreement between two or more criteria. These criteria have led to the selected values given in Appendix 3. The original analyses from all laboratories are tabulated in Appendix 2.

An example of an analytical inconsistency for a trace element is given by barium. BGS reported three values for barium that were a factor of 2 or 3 higher than all the other values and did not fit the trend in the data. Barite saturation indices for these three values were also higher. Consequently, the CENA values were chosen for barium for these three samples.

Another example was the highly discrepant charge balances seen in the initial sets of raw data. Only the major ions affect the charge balance and, in the Poços de Caldas waters, these are K^+ , Fe^{2+} , SO_4^{2-} , HCO_3^{-} and F. The iron determinations were considered to have the least error because they were obtained by three different methods: colorimetry, AA and ICP. Furthermore the Fe(II) is nearly equal to the total Fe, which

provides a further check on accuracy and precision. Potassium and SO₄ are well-known to have large uncertainties if proper precautions are not taken, so they may well be in error. The alkalinity was originally determined by simple end-point titration rather than from inflection points in an incremental titration curve or a Gran's plot. Later in the programme a modified Gran's plot was adopted, which greatly improved the results. Potassium, sulphate and alkalinity were sometimes varied within limits constrained by the overall consistency with other datasets to achieve an improved charge balance.

Five determinations of total dissolved sulphur have been made by ICP for comparison with the sulphate determinations. Dissolved sulphide is below about 10 μ gl/L so that total dissolved sulphur is equivalent to dissolved sulphate. Table III compares the results from ICP and IC for the determination of sulphate. The comparisons are rather good, except for the Morro do Ferro samples. The satisfactory comparison helps support the accuracy of the IC sulphate determinations.

TABLE III

Comparison of sulphate determinations in mg/L.

Sample		ICP	IC
PM-22	(PC-GW-27)	9.78	10.4
SHAFT	(PC-GW-28)	283	278
S. Stream	(PC-SW-04)	1.5	< 0.2
N. Stream	(PC-SW-05)	1.5	0.36

Analytical determinations made by Urânio do Brasil for the monitoring data are described in Appendix 1. This account includes a section on changes in the procedure for alkalinity measurements and the sampling procedure for dissolved oxygen.

Isotopic measurements for tritium, deuterium and ¹⁸O were also carried out and the results summarised in Table IV. Tritium results are expressed as TU (tritium units) where 1 TU corresponds to a ³H/H ratio of 10⁻¹⁸. Deuterium and ¹⁸O isotope ratios are expressed as $^{\circ}/_{\infty}$ deviations from SMOW (Standard Mean Ocean Water).

Low tritium concentrations were expected in the study area and all groundwater samples were therefore electrolytically enriched before measurement. Liquid scintillation or gas counting was used, with detection limits of 0.7 and 0.1 TU (2σ) respectively, after electrolytic preconcentration (Eichinger *et al.*, 1981; Wolf *et al.*, 1981). Determinations of deuterium and ¹⁸O in groundwater were made using standard

procedures (e.g. Moser and Rauert, 1980) with an accuracy of about 1 and 0.15 $^{\circ}/_{\infty}$ respectively.

5. General hydrochemical characteristics

The groundwater compositions given in Appendix 2 are highly anomalous relative to most other groundwater compositions, reflecting the rather unusual bedrock mineralogy. The groundwaters at both the analogue study sites can be described as K-Fe-SO₄ type waters in which fluoride is a much more important anion than chloride. This groundwater type is not amenable to plotting on a standard Piper diagram because of the preponderance of iron and fluoride. Furthermore, it is an unusual composition because K always has a higher concentration than Na, sometimes by as much as an order of magnitude. Other cations such as Ca and Mg are commonly below 1 mg/L and of comparable concentrations to Sr and Ba. These results indicate an aquifer mineralogy highly enriched in potassium and strongly depleted in other cations due to long periods of weathering.

The combination of both high iron and sulphate concentrations is indicative of pyrite oxidation, a process that is clearly occurring in the shallow subsurface because of the acid mine water compositions appearing in the 'SW' series of samples. The F3 and shaft waters contain the highest concentrations of iron and sulphate (other than SW01-SW03), reflecting a significant contribution of acid mine waters. The fact that these two locations do not have any significant acidity associated with them suggests that other reactions have taken place to neutralise it. Neutralisation reactions could involve dissolution of aluminosilicates and carbonates.

Delineation of flow-paths by examining the water chemistry is rather difficult for two reasons: (a) although increases in dissolved solids often indicate longer residence times, the increases in dissolved solids at the Osamu Utsumi mine can also be caused by faster reaction rates in the presence of acid mine waters or by passage of the groundwater through a highly mineralised zone, and (b) many of the groundwater samples have very low dissolved solids contents with many constituents near or below detection limit, and differences in water chemistry between boreholes are often subtle. For these reasons, the determination of the isotopes of water (³H, ²H and ¹⁸O) becomes very important in the estimation of flow direction and residence time.

At the Morro do Ferro site, both the MF10 and MF11 boreholes tapped shallow recharging groundwaters with such a low dissolved solids content that most constituents

were below detection limit. These samples probably reflect the composition of rainwater with only small amounts of potassium, zinc, iron, manganese, fluoride and silica added from contact with the aquifer. The groundwaters collected at MF12 show increased concentrations for nearly every constituent, as would be expected for a discharging water with greater residence time. This conclusion is supported by the tritium concentrations which could suggest an age of around 40-50 years if no mixing of old and young groundwaters occurs. Measurements of hydraulic conductivity indicate values close to 10⁷ m/s for MF10 and MF11, decreasing to 10⁹ m/s for the lower portion of MF12 (below 58 m). If a flow-path length of 100-200 m is assumed between MF10 and MF12 then a hydraulic conductivity of 107 m/s gives an average residence time of 32-63 years, consistent with the tritium data. The sampling interval in MF12 is from 45-71 m, covering the range from high to low permeability zones in the bedrock. Although mixing of younger and older waters in MF12 cannot be ruled out, it would seem reasonable to assume that most of the groundwater sampled in MF12 is from the more permeable part of the aquifer and that a residence time of approximately 40-50 years is a good estimate for mass transport calculations. If average hydraulic conductivities of 10⁻⁸ or 10⁻⁹ m/s are assumed, the residence time then becomes several hundred to several thousand years and considerable mixing of younger water must be invoked to explain the tritium data. The reliability of the isotopic data is discussed in a later section.

At the Osamu Utsumi mine site the important borehole locations are F1-F3, F5 and SW01-SW03. The shallow boreholes SW01-SW03 contain typical examples of acid mine waters with low pH values and high sulphate concentrations. It is noteworthy that these groundwaters have very similar proportions of overall constituents to the 'F' borehole series and MF12, except for barium. This similarity illustrates that the same type of water composition can result from either longer residence times or faster reaction rates that occur with greater acidity.

The relationship of the sampling locations at the mine site to the directions of water flow, as reflected by the chemical analyses of groundwaters, is complex. A comparison of the F1 and F2 water compositions shows very little difference. The concentrations of calcium, aluminium, zinc and fluoride tend to be higher in F2 than in F1, yet the F1 borehole is sampling water at about twice the depth as in the F2 borehole. This relationship can arise in one of two ways. Either the water is flowing in an upward direction and the F2 samples have a longer residence time than the F1 samples (which must then be closer to the recharge area) or the groundwater flows through a highly mineralised zone before it arrives at F2. The upward flow of groundwater has been demonstrated by the distribution of head measurements in the boreholes. In addition, the water that flows from F1 to F2 probably does travel through a mineralised zone, based on analysis of the core logging and mapping in the open pit. As will be discussed below, the tritium data indicate that the F1 water may be younger than the F2 water, supporting the hydraulic data.

Groundwaters from F3 have the highest concentrations of constituents aside from the acid mine water samples. This borehole is located much farther down-gradient from F1 and F2 and it is near the shaft which contains a mixture of acid mine waters and deep groundwaters. This is probably also the case for the F3 groundwaters. This suggestion is also supported by the tritium data which are consistently greater than 1 TU for the F3 waters and only slightly lower than the tritium values in the 'SW' series.

The groundwaters that are perhaps most indicative of the deeper aquifer are those collected from the F5 borehole. These waters have higher calcium, iron, aluminium, manganese, zinc and fluoride concentrations than those from F1 and F2. The pH values and the alkalinities are also higher. The tritium concentrations, however, are also higher. These results may indicate subsurface production of tritium or, more likely, an admixture of younger water.

Several redox-sensitive species were determined to characterise the redox chemistry of the groundwaters. These species included Fe, Mn, SO4, H2S, As, Se, Cr and O2. Unfortunately, the concentrations of As, Se, H₂S and Cr tended to be at or below detection limits. Dissolved iron concentrations were high and predominantly in the ferrous state. In rare instances some small concentrations of H2S were detected, but they were so close to the detection limit and so inconsistent in appearance that they cannot be considered to be very reliable, with the possible exception of the F2 borehole which contained a few ppb of sulphide in all samples analysed. This observation would fit with the suggestion that F2 has seen a longer residence time than F1. However, it is surprising that no sulphide could be found in F5 groundwaters, unless only small amounts of sulphide were produced by sulphate reduction and were subsequently removed by secondary pyrite formation. The redox chemistry can be summarised by stating that the groundwaters are highly oxidising in recharge areas, with the consequent formation of acid mine waters at depths from 12 m to 50 m or more in the down-gradient locations. Deeper groundwaters have lost their oxygen content and nearly all the dissolved iron is in the reduced Fe(II) state, indicating mildly reducing conditions. Some older groundwaters show signs of sulphate reduction but only trace concentrations of sulphide are observed, which indicates that the rate of sulphate reduction is very slow and any sulphide may be quickly removed by secondary pyrite precipitation.

Most of the groundwaters, with the exception of the very young recharging groundwaters and the acid mine waters, have consistently high concentrations of dissolved silica (30–35 mg/L). In a mildly acidic environment with pH values of 5–6.5 and fairly high average rainfall, aluminosilicate minerals tend to weather rapidly, releasing high concentrations of silica.

Acid solutions tend to inhibit polymerisation and crystallisation of silica, so that either silica remains dissolved or tends to form metastable phases such as chalcedony or cristobalite.

6. Tritium, deuterium and ¹⁸O results

Tritium, the radioactive isotope of hydrogen with a half-life of 12.4 a, is a tool commonly used in hydrology to distinguish between younger and older groundwater (recharged after or before 1952, respectively). Under special conditions, dating of groundwater is possible up to a time limit of 70 years.

The tritium concentrations in the sampled groundwaters vary between 0.04 and 9.2 TU (Table IV). These values are, as expected, relatively low and correspond, under simplifying assumptions (piston flow model, tritium input before 1952 about 4.5 TU), to "tritium model ages" up to more than 60 years. Some of the boreholes show temporal variations in the tritium concentration of the sampled groundwaters caused by admixture of recent groundwater (Fig. 4). In these cases "tritium model ages" are meaningless. Because the tritium data from IAEA network stations near Poços de Caldas are very incomplete (e.g. in the latest IAEA report (IAEA, 1990) no tritium data for the Brazilian network stations are recorded (W. Stichler, pers. comm., 1990)), measured tritium concentrations can only be interpreted very roughly. This rough interpretation is mainly based on the review paper by Gat (1980) and the IAEA reports (1981 and 1986).

Deuterium and ¹⁸O in the groundwater can provide information on the recharge conditions or origin of the groundwater as a result of spatial and temporal variations of the stable isotopes in precipitation. These variations are due to fractionation effects during the evaporation and condensation of water.

The δ values of the stable isotopes ²H and ¹⁸O vary between -57.2 and -30.7 $\delta^{2}H^{o}_{/\infty}$ SMOW and between -8.43 to -5.07 $\delta^{18}O^{o}_{/\infty}$ SMOW respectively, and scatter perfectly around the meteoric waterline (Table IV; Fig. 5). This shows that all groundwaters are of meteoric origin and were not affected by isotope exchange with the rock matrix or evaporation. The relatively strong variation in the stable isotope values is mainly

Figure 4. Tritium concentrations of groundwaters from different selected boreholes as a function of time.

TABLE IV

Code	Borehole	Sampling	³ н	² н	δ ¹⁸ Ο
cout	Dorchole	date		(°/m)	(°/m)
		ullo	$\pm 2\sigma$	± 1.0	±0.15
PC-GW-08	MF 10	86 10 16	-	-50.2	-7.73
PC-GW-12	MF 10	86 12 12	2.0 ± 0.5	-54.9	-8.11
PC-GW-33	MF 10	88 01 27	-	-55.1	-8.43
PC-GW-48	MF 10	88 06 08	2.2 ± 0.5	-55.1	-8.31
PC-GW-52	MF 10	88 09 12	2.1 ± 0.7	-55.7	-8.37
PC-GW-69	MF 10	88 12 06	2.6 ± 0.7	-55.8	-8.26
PC-GW-83	MF 10	89 04 05	2.1 ± 0.5	-57.2	-8.36
PC-GW-35	MF 11	88 01 28	-	-49.0	-7.47
PC-GW-49	MF 11	88 06 13	9.2 ± 0.6	-50.3	-7.65
PC-GW-53	MF 11	88 09 13	8.3 ± 0.7	-52.5	-7.78
PC-GW-70	MF 11	88 12 12	9.0 ± 0.8	-51.7	-7.84
PC-GW-82	MF 11	89 04 04	8.2 ± 0.8	-49.8	-7.66
PC-GW-34	MF 12	88 01 28	_	-53.6	-8.19
PC-GW-50	MF 12	88 06 14	0.24 ± 0.12	-53.2	-8.01
PC-GW-56	MF 12	88 09 19	0.14 ± 0.12	-55.0	-8.02
PC-GW-71	MF 12	88 12 14	0.1 ± 0.7	-54.3	-7.96
PC-GW-85	MF 12	89 04 11	0.10 ± 0.13	-53.3	-7.96
PC-GW-73	MF 13	88 12 20	7.2 ± 0.5	-50.8	-7.62
PC-GW-84	MF 13	89 04 07	5.9 ± 0.5	-53.0	-7.82
PC-GW-14	F1	87 01 06	1.1 ± 0.2	-50.1	-7.62
PC-GW-15	F1	87 02 11	-	-50.8	-7.72
PC-GW-17	F1	87 05 06	_	-50.7	-7.66
PC-GW-40	F1	88 02 08		-51.3	-7.80
PC-GW-42	F1	88 06 01	0.87 ± 0.18	-49.3	-7.62
PC-GW-54	F1	88 09 15	0.84 ± 0.20	-52.5	-7.77
PC-GW-63	F1	88 11 29	1.0 ± 0.2	-51.9	-7.74
PC-GW-77	F1	89 03 20	0.7 ± 0.7	-52.4	-7.79
PC-GW-16	F2	87 02 12	0.05 ± 0.12	-49.7	-7.58
PC-GW-41	F2	88 02 09	-	-48.2	-7.47
PC-GW-43	F2	88 06 02	0.20 ± 0.12	-49.9	-7.60
PC-GW-60	F2	88 09 23	0.04 ± 0.12	-53.1	-7.77
PC-GW-64	F2	88 11 29	0.34 ± 0.13	-52.3	-7.79
PC-GW-78	F2	89 03 20	0.14 ± 0.13	-49.2	-7.55

³H, ²H and ¹⁸O contents of water samples (together with the two-fold standard deviation) from Morro do Ferro (MF), the Osamu Utsumi mine, and from collected rainfall near Poços de Caldas.

(continued)

TABLE IV (continuation)

Code	Borehole	Sampling	³ H	δ ² H	δ ¹⁸ Ο
		date	(TU)	(°/∞)	(°/∞)
			± 2σ	±1	±0.15
PC-GW-36	F3	88 02 01		-50.7	-7.79
PC-GW-42	F3	88 02 24	-	-48.8	-7.55
PC-GW-45	F3	88 06 06	1.5 ± 0.3	-49.0	-7.30
PC-GW-55	F3	88 09 16	1.3 ± 0.2	-52.4	-7.68
PC-GW-65	F3	88 11 30	1.3 ± 0.2	-47.1	-7.09
PC-GW-79	F3	89 03 21	1.2 ± 0.5	-48.4	-7.46
PC-GW-44	F4	88 06 03	0.49 ± 0.15	-50.8	-7.59
PC-GW-59	F4	88 09 22	0.1 ± 0.5	-50.8	-7.71
PC-GW-67	F4	88 11 30	0.23 ± 0.13	-51.2	-7.75
PC-GW-62	F5	88 11 28	0.42 ± 0.12	-48.4	-7.49
PC-GW-72	F5	88 12 20	2.1 ± 0.2	-53.7	-7.97
PC-GW-80	F5	89 04 13	0.52 ± 0.14	-49.7	-7.61
PC-GW-37	SW01	88 02 02	-	-34.8	-5.70
PC-GW-46	SW01	88 06 07	3.3 ± 0.5	-43.6	-6.76
PC-GW-57	SW01	88 09 21	1.1 ± 0.7	-47.7	-7.00
PC-GW-68	SW01	88 12 02	2.6 ± 0.7	-35.8	-5.71
PC-GW-75	SW01	89 03 16	2.9 ± 0.3	-53.5	-7.93
PC-GW-38	SW02	88 02 03	-	-40.2	-6.22
PC-GW-39	SW03	88 02 03	_	-40.6	-6.27
PC-GW-47	SW03	88 06 07	1.6 ± 0.7	-43.6	-6.76
PC-GW-58	SW03	88 09 22	1.4 ± 0.7	-47.8	-7.29
PC-GW-66	SW03	88 11 30	2.3 ± 0.3	-30.7	-5.07
PC-GW-76	SW03	89 03 16	3.3 ± 0.3	-52.6	-7.84
PC-GW-87	LGS	89 05 03	5.5 ± 0.4	-42.1	-6.58
	Rain	89 01 02/3	4.5 ±1.5	-54.8	-8.10

³H, ²H and ¹⁸O contents of water samples (together with the two-fold standard deviation) from Morro do Ferro (MF), the Osamu Utsumi mine, and from collected rainfall near Poços de Caldas.

Figure 5. Deuterium contents vs ¹⁸O contents of groundwaters with the global meteoric waterline: $\delta^2 H = 8\delta^{18}O + 10$.

Figure 6. Tritium concentrations plotted against ¹⁸O contents of the groundwaters.

determined by seasonal variations in precipitation and, to a lesser extent, by altitude effects.

Modern tritium input may be represented by the tritium content of rainwater near Poços de Caldas ($4.5 \pm 1.5 \text{ TU}$). This value is in good agreement with estimated tritium concentrations derived from tritium results for the IAEA network stations Cuiaba and Porto Alegre, Brazil (IAEA, 1986) extrapolated to the sampling date.

Comparable or only slightly higher tritium concentrations were measured in groundwaters from boreholes LGS and MF13, corresponding to "tritium model ages" of either only a few years or about 25 to 30 years. Because LGS represents recharge conditions, the lower age for LGS is more probable. Groundwater from borehole MF11 shows the highest tritium concentration (about 9 TU) and could be about 20 to 25 years old, although this groundwater should represent recharge conditions. This could be explained by the relatively long percolation time of rainwater through the extensively altered (by hydrothermal activity and weathering processes) unsaturated zone, damping out seasonal variations of the stable isotopes.

Lower tritium concentrations than measured in modern precipitation were found in groundwater from all other boreholes. In the range of about 1 to 3 TU (corresponding to "tritium model ages" of about 30 to 35 years), two groups of groundwaters can be distinguished (Fig. 6). Whereas the stable isotope concentrations of groundwaters from deeper boreholes MF10, F1 and F3 are relatively constant, those of the shallow boreholes SW01 and SW02 vary very strongly, indicating admixture of seasonal precipitation. In this case we have mixtures of very young groundwater with much older groundwater (with tritium concentrations around 1 TU or even lower).

Groundwaters with such low tritium concentrations were found in the boreholes MF12 (0.1 to 0.24 TU), F1 (about 0.9 TU), F4 (about 0.3 TU), F2 (0.04 to 0.34 TU) and (with the exception of the 2.1 TU value for Dec. 20, 1988) in F5 (about 0.5 TU). Analytical errors can be excluded in the case of the 2.1 TU value because this sample was prepared and measured twice using two different methods (liquid scintillation and gas counting). In both cases the same tritium concentration was found and is thought to be a result of near-surface water contamination.

The "tritium model ages" of groundwaters with tritium concentrations between about 0.04 and 1 TU can be estimated to be between about 35 and more than about 60 years. Such low tritium concentrations were also found in deep STRIPA groundwaters (Moser *et al.*, 1989). It is important to note that these estimated "tritium model ages" are only minimum ages because contamination problems (e.g. by admixture of tritium-containing drilling fluid) become more dominant at these low tritium levels.

21

It may be worth considering that the subsurface production of tritium via the reaction ${}^{6}\text{Li}(n, \alpha)^{3}\text{H}$ might be significant in cases of high U and/or Th and Li concentrations in the rock matrix (Andrews *et al.*, 1989). In the investigated area there are, in principle, very high U and/or Th concentrations and, if the Li concentrations are not too low, tritium could be produced in significant concentrations. However, Li concentrations are low (mean value of 90 ppm for the F1 drillcore; MacKenzie *et al.*, this report series; Rep. 7) and, furthermore, porosities of the rock matrix in comparison to STRIPA granite are much higher and "compensate" partly for the very high U and Th concentrations found in the study area. Finally, the transfer of tritium produced in the rock matrix to the groundwater may be below 1% (Forster *et al.*, 1989), resulting in additional reduction of subsurface-produced tritium to the groundwater.

7. Long-term monitoring results and seasonal patterns

The long-term monitoring results are shown in Appendix 4. Some of the apparent variations are related to perturbations in the borehole or improper sampling techniques during the early part of the programme. After these effects settled down, there were improvements in the measurements of pH and alkalinity, resulting in lower and more reliable values than before.

After accounting for these effects and normal scatter in the data, only two trends are apparent. One is the seasonal patterns that are demonstrated in the shallow boreholes SW01-SW03 (Fig. 7). These show pattern changes in SW01 during the transition from dry to wet seasons, i.e. marked increases in Fe(II) and Fe(tot), SO₄, F and U; pH showed a corresponding decrease of about 1 unit. Other increases in dissolved constituents occurred in the March-April period early in 1988, but there is no obvious explanation for this that can be related to precipitation trends. The other trend is that of increasing concentrations of all constituents in the F3 borehole, indicting a plume of acid mine water moving down-gradient in the flow system and being neutralised along the way (Fig. 8).

8. Conclusions

Chemical analyses of groundwaters at two natural analogue study sites in Brazil show unusual compositions dominated by a K-Fe-SO4 type water high in fluoride and silica. In

Figure 7. Seasonal variability of monitored parameters with precipitation for the acid mine waters from the SW01 borehole.

Figure 8. Time series trends of monitored parameters with precipitation for the F3 borehole showing the continuously increasing iron concentrations with time.

the near-surface environment there is a considerable amount of acid mine water production. Some of the intermediate-depth waters reflect a mixing of acid mine waters with normal, deeper groundwaters. The highly depleted concentrations of Na and divalent cations indicate advanced stages of weathering, and the high concentrations of iron and sulphate suggest pyrite oxidation is one of the dominant processes. The high dissolved silica concentrations reflect the ultimate breakdown of primary and secondary aluminosilicate minerals in an acidic environment.

Tritium and stable isotope measurements make it possible to classify groundwaters with regard to approximate residence times and positions along the flow-path. Shallow groundwaters have tritium concentrations above 1 TU, indicating that a significant proportion has recharged after 1952. Groundwater from the deeper boreholes shows tritium concentrations mostly below 1 TU and can be interpreted as groundwater with ages of about 35–60 years, although the groundwater may be influenced by subsurface-produced tritium.

The stable isotopes clearly reflect recharge conditions and demonstrate that all the groundwaters are of meteoric origin and not affected by evaporation or water-rock interactions.

9. Acknowledgements

This study would not have been possible without the dedicated efforts of Ruy Frayha and his assistants (Paulinho "the stomach" Rabelo and Serginho "6-volt" Scassiotti) who ran the sampling programme, Luiz Gomiero, Luiza Wiikmann and Walter Scassiotti Filho (Urânio do Brasil) who managed the monitoring analyses and went out of their way to do additional and specialised analyses at our request, Mark Cave and the analytical labs at BGS who provided the bulk of the data, the CENA labs for their data, Claude Degueldre (PSI) for providing early versions of his data and Jim Ball and Ann Maest at the USGS who provided some trace and major element analyses. The isotope analyses were carried out by GSF under the supervision of W. Rauert and P. Trimborn. Together with Peter Fritz, both scientists participated in discussions concerning the isotope section of this paper. Thanks are also due to Ady Schmitt and Elisabeth Sturm for low-level tritium measurements and Harald Rohde for plotting the isotope figures. Considerable thanks are due to Jo Burchard who spent many months compiling, checking and artfully tabulating mountains of analytical data.

10. References

- Andrews, J.N., Davis, S.N., Fabryka-Martin, J., Fontes, J-Ch., Lehmann, B.E., Loosli, H.H., Michelot, J-L., Moser, H., Smith, B. and Wolf, M., 1989. The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite. *Geochim. Cosmochim. Acta*, 53, 1803-1815.
- Eichinger, L., Forster, M., Rast, H., Rauert, W. and Wolf, M., 1981. Experience gathered in low-level measurement of tritium in water. In: Low-Level Tritium Measurement. *IAEA TECDOC-246*, Vienna, 43-64.
- Gat, J.R., 1980. The isotopes of hydrogen and oxygen in precipitation. In: P. Fritz and J-Ch. Fontes (Editors), Handbook of Environmental Isotope Geochemistry. *Elsevier*, Amsterdam, 21-47.
- Forster, M., Moser, H., Ramm, K. and Hietel, B., 1989. Investigating the neutroninduced subsurface production of environmental isotopes ³⁷Ar, ³⁹Ar, ³H and ³⁶Cl with neutron irradiation of aquifer material. *Chem. Geol. (Isot. Geosci. Sect.)*, 79, 325-332.
- IAEA (International Atomic Energy Agency), 1981. Statistical Treatment of Environmental Isotope Data in Precipitation. IAEA Tech. Rep. Ser., 206, Vienna, 256 pp.
- IAEA (International Atomic Energy Agency), 1986. Environmental Isotope Data No.
 8: World Survey of Isotope Concentration in Precipitation (1980–1983). IAEA Tech. Rep. Ser., 264, Vienna, 184 pp.
- IAEA (International Atomic Energy Agency), 1990. Environmental Isotope Data No.
 9: World Survey of Isotope Concentration in Precipitation (1984–1987). IAEA Tech. Rep. Ser., Vienna (In press).
- Moser, H. and Rauert, W., 1980. In: G. Matthess (Editor), Isotopenmethoden in der Hydrologie; Lehrbuch der Hydrogeologie, Bd. 8. Gebr. Borntraeger, Stuttgart-Berlin, 400 pp.
- Moser, H., Wolf, M., Fritz, P., Fontes, J-Ch., Florkowski, T. and Payne, B.R., 1989. Deuterium, oxygen-18, and tritium in Stripa groundwater. *Geochim. Cosmochim. Acta*, 53, 1757-1763.
- Wolf, M., Rauert, W. and Weigel, F., 1981. Low-level measurement of tritium by hydrogenation of propadiene and gas counting of propane. *Intl. J. Appl. Radiat. Isot.*, 32, 919-928.
Appendix 1

.

Groundwater analysis conducted by the CIPC/Urânio do Brasil Control Laboratory, Osamu Utsumi mine complex, Poços de Caldas, Minas Gerais, Brazil.

Appendix 1

Groundwater analysis conducted by the CIPC/Urânio do Brasil Control Laboratory, Osamu Utsumi mine complex, Poços de Caldas, Minas Gerais, Brazil.

L. A. GOMIERO, L. O. WIIKMANN, W. S. FILHO

CIPC/Urânio do Brasil Control Laboratory, Campo do Cercado, Caixa Postal 961, Poços de Caldas - 37.700 (Brazil).

1. Introduction

The CIPC/URÂNIO DO BRASIL Process Control Laboratory carried out the following on-site determinations in near-surface water and groundwater samples: iron (II), total iron, sulphide, sulphate, uranium, alkalinity, potassium, sodium, fluoride and dissolved oxygen.

2. Sampling procedure

Routine sampling was carried out at the Osamu Utsumi mine and Morro do Ferro sites. After ensuring: a) a representative groundwater composition (2 hours pumping and pH and Eh monitoring using a portable unit), b) on-site filtering (0.45 μ m) and c) preservation when necessary (with HCl for iron (II) and total iron analysis only), the samples were transported directly to the Process Control Laboratory at the mine complex where they were immediately analysed. Sampling for dissolved oxygen analysis was performed in a special arrangement as shown in Figure 1-1.

3. Analytical procedure

- Fe(II) and Fe (total), were carried out by the Ferrozine method, as described by Nordstrom (pers. comm. 1988). Repetitive determinations were carried out.
- Sulphide was determined using a specific-ion electrode after a preconcentration step. The sulphide was separated as ZnS, co-precipitated with Zn(OH)₂ and subsequently dissolved in alkaline EDTA-ascorbic acid solution for potentiometric measurement with the sulphide-selective electrode. (Baumann, 1974; Vivit et al., 1984).

- Uranium was determined by the fluorimetric method as described in the "Manual de Métodos de Análise Química do Laboratório de Processos Minerais de Poços de Caldas", method nr. M-92.
- Potassium and sodium were determined by the flame photometric method, as described in "Standard Methods for the Examination of Water and Wastewater", 14th Edition, 1975, APHA-AWWA-WPCF, 234-235 and 250-253.
- Sulphate was determined by the nephelometric method (see above uranium reference, 496-498).
- *Fluoride* was determined by the specific-ion electrode procedure (see above uranium reference, 391-393).
- Dissolved Oxygen was determined by the Winkler (or Iodometric and its azide modification) method (see above uranium reference, 440-447).
- Alkalinity was determined firstly by the methyl orange endpoint titration, but the results were not satisfactory. Two alternative procedures were tested; see Butter (1982) and Thomas and Linch (1960). Table I summarises the results obtained by these two procedures. As the results were in agreement, the modified Gran's plots titrations were adopted because this was easier and less time consuming than the Gran's plots titration method.

Sample	Sampled		Modified
Identification	Date	Gran's plots	Gran's plots
F1	17-06-88	2.59	2.47
F2	17-06 88	9.09	8.95
F4	28-06-88	5.96	4.26
SHAFT	28 06 88	12.3	12.9
F3	28-06-88	2.45	2.48
MF10	28-06-28	2.81	2.44
PM22	28-06-88	22.3	20.9
F2	28-06-88	11.3	10.3
F1	28-06-88	2.90	2.92
MF12	30-06-88	23.4	23.0
MF10	30-06-88	2.40	2.39
MF11	30-06-88	0.20	0.19
		4.55	1 74
HCO3	1,99 mg/L	1.75	1./4
HCO3	9,95 mg/L	9.58	9.42

TABLE	1-I
-------	-----

Alkalinity determination by the Gran's plots and Modified Gran's plots Methods (mg/L).

Figure 1-1. Sampling device used for dissolved oxygen analysis.

4. References

- Baumann, E.W., 1974. Determination of parts per billion sulphide in water with the sulphide-selective electrode. Anal. Chem., 46 (9), 1345-1347.
- Butter, J.N., 1982. The Gran's Plots Titration. In: Addison-Wesley (Editor), Carbon dioxide equilibria and their applications.
- Thomas, J.F.J., and Linch, J.J., 1960. The modified Gran's plots titration. In: Determination of carbonate alkalinity in natural waters. *Jour. AWWA*, 259-268.
- Vivit, D.F., Ball, W. and Jenne, E.A., 1984. Specific-ion electrode determination of sulphide pre-concentrated from San Francisco Bay waters. *Environ. Geol. Water. Sci.*, 6 (2), 79-90.

Appendix 2

.

Chemical analyses of groundwater samples from the Osamu Utsumi mine and Morro do Ferro study sites.

F1 (9-1WC11) Reference water sample for determination of accuracy and precision.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(*C) pH (field/lab) Cond.(mS/m) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F1 (9-1WC11) PC-GW-51 96.5-125.7 880707 22 4.87/4.06 338 <5.0	F1 (9-1WC11) PC-GW-61 96.5-125.7 880707 22 4.87/3.63 <5.0	F1 (9-1WC11) PC-GW-74 96.5-125.7 880707 22 4.87/3.71 <5.0	F1 (9-1WC11) PC-GW-86 96.5-125.7 880707 22 4.87/3.59 <5.0	F1 Selected [†] 22 4.87 338 2.0 0.4367 0.4730 -8.0%
Element			mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V Be	0.45 (0.46/0.48) 0.07 (0.12/0.07) 0.044 (0.045/0.046) 0.124 (0.135/0.137) 0.19 (<0.20/<0.20) 12.0 (13.1/12.7) <0.010 1.32 (0.28/0.20) <0.050 (<0.5) 0.104 (0.19/0.20) 0.081 (0.093/0.115) <0.005 (<0.005) <0.005 (<0.005) <0.005 (<0.005) <0.002 (<0.01) (<0.002) <0.025 (<0.003) <0.035 <0.090 (<0.2) <0.015 (<0.001/0.0014)	$\begin{array}{c} 0.45 \\ < 0.07 \\ 0.042 \\ 0.125 \\ 0.21 \\ 12.1 \\ < 0.010 \\ \hline \\ 1.35 \\ < 0.050 \\ 0.187 \\ 0.083 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.02 \\ \hline \\ \hline \\ \\ < 0.025 \\ < 0.035 \\ < 0.090 \\ < 0.015 \\ \hline \\ \\ \hline \\ \\ \hline \end{array}$	0.593 < 0.070 0.043 0.126 0.224 13.4 < 0.01 1.36 0.10 0.187 0.085 < 0.005 < 0.005 < 0.005 < 0.005 < 0.020 < 0.020 < 0.025 < 0.025 < 0.035 < 0.09 < 0.015 	$\begin{array}{c} 0.385 \\ < 0.070 \\ 0.043 \\ 0.124 \\ 0.165 \\ 12.9 \\ < 0.010 \\ \hline \\ 1.30 \\ < 0.05 \\ 0.18 \\ 0.080 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.02 \\ < 0.020 \\ < 0.025 \\ < 0.035 \\ < 0.09 \\ < 0.015 \\ \hline \\ $	$\begin{array}{c} 0.47 \pm 0.07 \\ 0.07 \\ 0.043 \pm 0.0015 \\ 0.125 \pm 0.0055 \\ 0.20 \pm 0.02 \\ 12.7 \pm 0.6 \\ < 0.010 \\ 1.30 \\ 1.33 \pm 0.03 \\ < 0.05 \\ 0.19 \pm 0.03 \\ 0.083 \pm 0.013 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.001 \\ < 0.0015 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.001 \\ < 0.00$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ Ti	15.5 0.30 1.38 <0.005 0.02 <0.10 <0.015 33(37.0/37.2) (<0.010)	15.7 0.36 6.20 <0.005 0.06 <0.10 <0.015	16.2 0.52 <2.0 <0.05 <0.10 <0.1 <0.015 33	16.5 0.48 3.8 <0.05 <0.10 <0.1 <0.015 34	$ \begin{array}{r} 16 \pm 0.5 \\ 0.41 \pm 0.102 \\ 3 \pm 2.4 \\ < 0.005 \\ 0.04 \\ < 0.1 \\ < 0.015 \\ 35 \pm 2.1 \\ < 0.010 \\ \end{array} $

() U.S.G.S. data, J.W.Ball, number before slash is on filtered sample, after slash is on unfiltered sample.

[†] These represent "best" values based on a comparison of 5 independent analyses, known trends (i.e. consistency in time), charge balance and results from Gran's titrations for alkalinity from similar samples. Error range is one standard deviation based on all positive determinations. "Best" values sometimes represent the mode instead of the mean.

	Selected	analytical	results	of	groundwater	samples	from	the	Osamu	Utsumi	Mine
		•			•						

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(* C) pH (lab) Cond.(mS/m) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F1 (9-1WC11) PC-GW-09 96.5-125.7 861113 20.5 5.8 6.2 325 11 0.46 0.53 -13.7	F1 (9-1WC11) PC-GW-14 96.5-125.7 870106 21.0 5.4 6.0 10 0.47 0.50 -7.4	F1 (9-1WC11) PC-GW-15 96.5-125.7 870210 20.0 5.5 11 0.47 0.53 -10.9	F1 (9-1WC11) PC-GW-17 96.5-125.7 870506 22.5 5.5 6.2 203 10 0.49 0.58 -16.6
Element		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	$\begin{array}{c} 0.50\\ 0.11\\ 0.09\\ 0.15\\ 1.29\\ 10.0\\ \hline \\ \hline \\ 1.60\\ 1.70\\ 0.31\\ 0.27\\ 0.15\\ < 0.02\\ < 0.02\\ < 0.02\\ < 0.02\\ \hline \\ \hline \\ < 0.02\\ \hline \\ < 0.02\\ \hline \\ < 0.02\\ \hline \\ \hline \\ < 0.02\\ \hline \\ < 0.02\\ \hline \\ \hline$	$\begin{array}{c} 0.61 \\ 0.05 \\ 0.10 \\ 0.14 \\ 0.57 \\ 12.0 \\ \hline \\ 1.53 \\ 1.62 \\ 0.155 \\ 0.28 \\ 0.12 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ \hline \\ \\ < 0.02 \\ < 0.02 \\ < 0.10 \\ \hline \\ \end{array}$	0.68 0.10 0.05 0.15 0.23 13.3 1.62 1.67 <0.06 0.27 0.11 <0.01 <0.02 <0.035 <0.085 <0.60 <0.02 <0.10 	$\begin{array}{c} 0.70 \\ < 0.14 \\ 0.064 \\ 0.17 \\ 0.38 \\ 13.4 \\ < 0.02 \\ 2.03 \\ 2.06 \\ 0.03 \\ 0.34 \\ 0.12 \\ < 0.02 \\ < 0.02 \\ < 0.02 \\ < 0.05 \\ < 0.035 \\ < 0.02 \\ < 0.60 \\ < 0.05 \\ < 0.10 \\ < 0.01 \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂	15 0.74 <0.01 34.0	15 0.47 <0.02 34.5	15.4 0.50 <0.10 <0.005 <0.05 <0.10 <0.02 35.5	18.8 0.55 <0.10 <0.05 <0.02 <0.02 <0.02 32.6

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature (°C) pH [field/lab] lab D O (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F1 (9-1WC11) PC-GW-22 96.5-125.7 870820 20.5 6.1 220 8 0.40 0.45 -11.9	F1 (9-1WC11) PC-GW-23 96.5-125.7 870917 20.4 5.7 8 0.41 0.45 -10.6	F1 (9-1WC11) PC-GW-40 96.5-125.7 880208 23 [5.40/5.67]2.35 0.19 461 3.0 0.382 0.439 -13.97	F1 (9-1WC11) PC-GW-42 96.5-127.7 880601 21.3 [5.25/5.53]5.51 0.72 146 4.3 0.435 0.424 2.78
Element		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	$\begin{array}{c} 0.51 \\ 0.043 \\ 0.034 \\ 0.107 \\ 0.16 \\ 12.0 \\ < 0.02 \\ 1.12 \\ 1.12 \\ 1.18 \\ 0.04 \\ 0.145 \\ 0.045 \\ < 0.1 \\ < 0.015 \\ < 0.12 \\ < 0.035 \\ < 0.020 \\ < 0.030 \\ < 0.10 \\ < 0.01 \\ \\ \\ \\ \end{array}$	$\begin{array}{c} 0.518\\ 0.042\\ 0.035\\ 0.108\\ 0.196\\ 12.0\\ < 0.02\\ 1.24\\ 1.33\\ 0.04\\ 0.140\\ 0.036\\ < 0.01\\ < 0.015\\ < 0.036\\ < 0.015\\ < 0.035\\ < 0.020\\ < 0.030\\ \hline\\ < 0.01\\ \hline\\ \hline$	$\begin{array}{c} 0.52\\ 0.032\\ 0.042\\ 0.111\\ 0.19\\ 10.9\\ 0.0005\\ 1.2\\ 1.23\\ 0.07\\ 0.17\\ 0.08\\ < 0.005\\ < 0.015\\ < 0.015\\ < 0.015\\ < 0.012\\ < 0.002\\ 0.003\\ 0.003\\ < 0.100\\ < 0.045\\ \hline \hline \\ 0.0014\\ \hline \\ \hline \end{array}$	$\begin{array}{c} 0.45\\ 0.08\\ 0.0424\\ 0.126\\ 0.22\\ 13.0\\ < 0.015\\ 1.26\\ 1.29\\ < 0.06\\ 0.185\\ 0.08\\ < 0.005\\ < 0.015\\ 0.011\\ < 0.002\\ < 0.003\\ < 0.050\\ < 0.050\\ < 0.050\\ < 0.050\\ < 0.050\\ < 0.050\\ < 0.045\\ < 0.2\\ [0.0003] 0.0045\\ < 0.0005\\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	14.5 0.34 <0.20 <0.02 <0.05 <0.01 34.3 	14.8 0.29 <0.20 <0.02 <0.02 32.31	15.8 0.42 52.5 <0.050 <0.10 0.18 <0.020 31 0.005	15.8 0.36 0.18 <0.050 <0.01 <0.05 33 0.004

		·······		
Borehole	F1 (9-1WC11)	F1 (9-1WC11)	F1 (9-1WC11)	F1 (9-1WC11)
Sample Code No.	PC-GW-51	PC-GW-54	PC-GW-63	PC-GW-77
Sampling Int (m)	96,5-125.7	96.5-125.7	96.5-125.7	96.5-125.7
Date Collected	880707	880915	881129	890320
Temperature(°C)	22	21	21	22
pH [field/lab] lab	4.87	[5.35/5.64] 6.08	[5.37/5.47] 6.08	[5.27/6.45] 5.27
DO(mg/L)		<0.008	<0.008	<0.008
$E_{\rm L}(mV)$	338	308	239/207	259
Alkalinity (mg/L HCO.)	<5.0	3.0	12	3.38
Sum Cations (meg/L)	0.437	0.435	0.442	0.465
Sum Anions (meq/L)	0.472	0.523	0.552	0.456
Charge Balance %	-8.0	-18.2	-22.3	2.0
Flament		mg/L		<u></u>
Element		g/=		
<u> </u>	0.47	0.70	0.622	0.43
Mg	0.07	<0.07	0.077	0.14
Sr	0.043	0.060	0.039	0.038
Ba	0.125	0.156	0.115	0.119
Na	0.20	0.19	0.229	0.174
K	12.7	12	12.7	14
Li	<0.010	<0.010	<0.01	0.002
Fe(II)	1.30	1.76	1.50	1.14
Fe(tot)	1.33	1.77	1.52	1.17
Al	<0.05	<0.050	<0.05	0.071
Mn	0.19	0.28	0.101	0.143
Zn	0.083	0.11	0.007	~0.075
Cd	<0.005	<0.005	<0.005	<0.0005
Cu	< 0.005	<0.005	<0.005	<0.005
Cr	<0.010	<0.02	<0.02	<0.02
Co	< 0.002	<0.020	<0.020	<0.0005
Ni	< 0.003	<0.025	<0.025	0.023
Мо	<0.035	<0.035	<0.055	0.011
Rb				<0.020
Cs			<0.00	0.001
Pb	<0.09	<0.09	<0.09	<0.001
Zr	0.0015	<0.0015	<0.0015	<0.2
V	<0.015	0.005	0.005	0.005
Th	<0.001			0.000015
50	16	20	16.4	18
504	0.41	05	0.27	0.49
	3	1.09	<2.0	<2.0
CI Br	<0.005	<0.020	<0.05	<0.05
NO	0.04	<0.02	<0.10	<0.10
HPO	<0.1	<0.10	<0.1	<0.1
R	<0.015	< 0.015	<0.015	<0.015
SiO.	35	32	36	31
S ²⁻	<0.010	0.0038	0.0056	0.0040

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature (°C) pH (lab) Cond.(mS/m) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F2 (9-1VC24) PC-GW-13 45-60 861215 21.5 5.8 5.7 311 10 0.49 0.53 -7.2	F2 (9-1VC24) PC-GW-16 45-60 870212 21.0 5.8 13 0.48 0.54 -12.8	F2 (9-1VC24) PC-GW-20 45-60 870724 21.0 5.6 6.0 190 10 0.49 0.53 -9.0	F2 (9-1VC24) PC-GW-25 45-60 870928 21.0 5.66 6.3 11 0.48 0.54 -12.5
Element		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb	$ \begin{array}{c} 1.7\\ 0.07\\ 0.10\\ 0.11\\ 0.52\\ 11\\ \hline \\ 0.58\\ 0.79\\ 0.395\\ 0.185\\ 0.230\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ \hline \\\\ <0.02\\ <0.10\\ \end{array} $	$\begin{array}{c} 1.5 \\ < 0.10 \\ 0.048 \\ 0.095 \\ 0.19 \\ 12 \\ \hline \\ 0.89 \\ 0.95 \\ 0.35 \\ 0.120 \\ 0.205 \\ \hline \\ \\ < 0.01 \\ < 0.02 \\ < 0.035 \\ < 0.01 \\ < 0.060 \\ < 0.02 \\ < 0.01 \\ < 0.02 \\ < 0.01 \end{array}$	2.00 <0.10 0.064 0.113 0.14 12 <0.02 0.56 0.58 0.28 0.210 0.300 <0.02 <0.02 <0.02 <0.02 <0.035 <0.02 <0.035 <0.02 <0.030	$\begin{array}{c} 2.10\\ 0.044\\ 0.064\\ 0.100\\ 0.109\\ 11.4\\ < 0.02\\ 0.61\\ 0.73\\ 0.259\\ 0.174\\ 0.167\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.01\\ < 0.05\\ < 0.035\\ < 0.02\\ < 0.030\\ \hline\\ < 0.10\\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂	13 1.74 <0.01 33.0	11.8 1.62 <0.10 <0.005 <0.01 <0.02 34.5	13 1.9 <0.10 <0.05 <0.10 <0.10 <0.02 30.8	12.9 1.72 <0.20 <0.02 0.03 0.06 32.1

	Selected analytical	results of	groundwater	samples	from	the	Osamu	Utsumi	Mine
•.	Selected analytical		Biodila and	oumprou					

·····		······································			
Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(*C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F2 (9-1VC24) PC-GW-41 45 - 60 880209 22 [5.6/6.05]6.11 0.57 339 6.0 0.500 0.497 0.716	F2 (9-1VC24) PC-GW-43 45 - 60 880602 21.0 [5.72/6.08]5.98 0.72 323 8.0 0.511 0.503 1.65	F2 (9-1VC24) PC-GW-60 45 - 60 880923 22 [5.73/5.81]6.06 0.21 262 6.50 0.450 0.520 -14.6	F2 (9-1VC24) PC-GW-64 45 - 60 881129 21 [5.88/5.84]5.75 <0.008 270 12 0.564 0.592 -4.81	F2 (9-1VC24) PC-GW-78 45 - 60 890320 21 [5.90/6.42]5.73 <0.008 191 10 0.610 0.595 2.56
Element		mg/L			
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	2.28 0.17 0.063 0.110 0.14 11 0.0010 0.98 1.01 0.28 0.20 0.15 <0.005 <0.015 <0.015 <0.005 <0.005 <0.002 <0.003 <0.0065 <0.100 <0.045 0.0015 	$\begin{array}{c} 2.2\\ 0.07\\ 0.064\\ 0.11\\ 0.13\\ 12\\ <0.015\\ 1.05\\ 1.11\\ 0.23\\ 0.20\\ 0.15\\ <0.005\\ <0.015\\ <0.005\\ <0.015\\ <0.012\\ <0.002\\ <0.003\\ <0.050\\ <0.045\\ <0.2\\ [0.0014]0.0056\\ <0.00005 \end{array}$	2.0 <0.007 0.061 0.104 0.18 10.85 <0.010 0.92 0.935 0.220 0.169 0.169 <0.005 <0.005 <0.005 <0.02 <0.020 <0.025 <0.035 <0.035 <0.090 <0.015 <0.2 <0.005 =	2.66 0.070 0.079 0.126 0.142 12.8 <0.01 1.16 1.18 0.27 0.241 0.173 <0.005 <0.005 <0.005 <0.020 <0.020 <0.025 <0.020 <0.025 <0.035 <0.09 <0.0015 <0.2 0.0013 	$\begin{array}{c} 2.65 \\ 0.070 \\ 0.009 \\ 0.131 \\ 0.2 \\ 13.5 \\ < 0.010 \\ 1.67 \\ 1.70 \\ 0.319 \\ 0.318 \\ 0.211 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.002 \\ < 0.020 \\ < 0.025 \\ < 0.025 \\ < 0.035 \\ < 0.09 \\ < 0.015 \\ < 0.2 \\ 0.009 \\ \hline \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	12.6 2.50 <1.0 <0.050 <0.10 0.15 0.078 32 0.004	12.8 2.00 <0.10 <0.050 <0.01 <0.05 32 0.004	15 1.78 0.20 <0.005 0.04 <0.010 <0.015 30 0.0015	13.3 2.24 <2.0 <0.05 <0.10 <0.1 <0.015 31 0.0021	14.2 2.57 <2.0 <0.05 <0.10 <0.1 <0.015 29 0.019

and the second					
Borehole	F3 (9-1NH47)	F3 (9-1NH47)	F3 (9-1NH47)	F3 (9-1NH47)	F3 (9-1NH4
Sample Code No.	PC-GW-36	PC-GW-45	PC-GW-55	PC-GW-65	PC-GW-79
Sampling Int (m)	50 - 77.6	50 - 77.6	50 - 77.6	50 - 77.6	50 - 77.6
Date Collected	880201	880606	880916	881130	890321
Temperature(*C)	22	22.2	22	22	23
pH [field/lab] lab	[5.45/5.29]3.56	[5.21/6.06]3.99	[5.10/5.18]2.99	[5.35/5.14]3.49	[5.03/5.24]3
D.O. (mg/L)	<0.008	<0.008	<0.008	<0.008	<0.008
Eh(mV)	448	414	338	225	319
Alkalinity (mg/L HCO ₃)	3.0	3.0	2.65	1.78	2.06
Sum Cations (meq/L)	7.58	10.2	11.6	12.8	14.0
Sum Anions (meq/L)	8.75	11.0	11.7	15.0	16.0
Charge Balance %	-14.3	-7.70	-1.03	-15.4	-13.6
Element		mg/L			
	74	100	111	122	131
	2 00	40	4.00	4 16	40
Mg S-	5.00 1.5	20	21	2.35	2.7
	0.050	0.050	0.051	0.049	0.046
Da Na	1 1	1 1	1 28	1.0	1.00
K	33.5	397	42.5	44.5	46.3
Li	0.0034	<0.015	<0.010	<0.01	0.015
Fe(II)	53.4		88.7	98. 9	117.5
Fe(tot)	53.5	74	88.9	99.4	118.5
Al	2.5	3.2	4.420	5.14	6.2
Mn	12	18	19	20.0	20.7
Zn	2.02	3.0	3.27	8.77	3.8
Cd	0.0008	<0.005	<0.005	<0.005	<0.0005
Cu	0.0014	<0.015	<0.005	<0.005	<0.0005
Cr	<0.010	<0.010	<0.02	<0.02	0.092
Со	0.007	0.008	<0.020	<0.020	<0.005
Ni	0.004	0.009	<0.025	<0.025	<0.025
Мо	<0.050	<0.050	< 0.035	<0.035	0.002
Pb	<0.100	<0.050	<0.090	<0.09	0.0008
Źr	<0.045	<0.045	<0.015	<0.015	<0.0005
V		<0.2	<0.2	<0.2	<0.2
U	0.0045		<0.001	0.019	0.001
Th		0.0002			0.0003
SO4	400	510	540	700	745
F	5.4	6.14	7.05	6.57	9.24
Cl	2.9	0.44	<0.20	<2.0	<2.0
Br	<0.050	0.084	<0.010	<0.05	<0.05
NO ₃	<0.10	0.02	0.18	<0.10	0.44
HPO₄	<1.0	<0.05	<0.10	<0.1	<0.1
B	0.065		0.145	0.204	0.235
SiO ₂	34	34	36	<i>5</i> 4	50 0029
5*	****	<0.0001	<0.001	0.0018	0.0028

40

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(*C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	F5 (MI-55) PC-GW-62 275-300 881128 24 [6.25/6.39] 5.56 <0.008 255 26.5 1.87 1.89 -1.23	F5 (MI-55) PC-GW-72 275-300 881220 [6.00] 5.98 <0.008 31.4 1.42 1.46 3.24	F5 (MI-55) PC-GW-80 275-300 890413 24 [5.83/6.38] 6.02 <0.008 462 23.5 1.10 0.70 44.2
Element		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U	$15.6 \\ 0.145 \\ 0.366 \\ 0.105 \\ 0.612 \\ 13 \\ < 0.01 \\ 9.25 \\ 9.35 \\ 1.05 \\ 6.86 \\ 0.490 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.005 \\ < 0.020 \\ < 0.020 \\ < 0.020 \\ < 0.025 \\ < 0.035 \\ < 0.09 \\ < 0.0015 \\ < 0.015 \\ 0.008 \\ \end{cases}$	$ \begin{array}{c} 10.8\\ 0.3\\ 0.26\\ 0.110\\ 0.80\\ 12.5\\ <0.01\\\\ 8.68\\ 0.6\\ 2.95\\ 0.17\\ <0.005\\ <0.005\\ <0.005\\ <0.022\\ <0.020\\ <0.025\\ <0.035\\ <0.09\\ <0.0015\\ <0.015\\ 0.011\\ \end{array} $	$\begin{array}{c} 7.88\\ 0.46\\ 0.20\\ 0.12\\ 0.63\\ 11.8\\ 0.002\\ 6.13\\ 6.27\\ 0.183\\ 2.17\\ 0.13\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0005\\ < 0.0002\\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	53 6.7 <2.0 <0.05 <0.10 <0.1 0.230 37 <0.001	30 6.16 <2.0 <0.05 <0.10 <0.1 0.020 37.3 <0.001	28 6.0 <2.0 <0.05 <0.10 <0.1 <0.015 34

			· · · · · · · · · · · · · · · · · · ·	
Borehole	9-11/016	SHAFT	SUPPLY DAM	
Sample Code No.	PC-GW-21	PC-GW-28	PC-SW-03	
Sampling Int (m)		0-40		
Date Collected	870729	871007	870709	
Temperature (°C)	21.02	20.05	17.5	
pH (lab)	5.5	5.7	6.5	
Cond.(mS/m)	6.0	6.4	6.0	
Eh(mV)				
Alkalinity (mg/L HCO ₃)	10	20	9	
Sum Cations (meg/L)	0.53	6.77	0.16	
Sum Anions (meq/L)	0.62	6.66	0.18	
Charge Balance %	-15.8	1.6	-9.3	
Element		mg/L		
Са	2.40	59.8	0.14	
Mg	0.134	2.28	<0.10	
Sr	0.108	1.61	0.01	
Ba	0.129	0.059	0.014	
Na	0.22	1 35	0.19	
K	12.2	21.8	5.3	
Li	<0.02	<0.02	<0.02	
Fe(II)	<0.02 	44 5	0.012	
Fe(tot)	0.03	44.7	0.14	
A1	0.05	7.68	<0.02	
Mn	0.55	13.1	0.02	
7n	0.12	0 184	<0.02	
	A 02	~0.00	<0.02	
Cu Cu	0.018	<0.02	<0.01	
Cu Cr	<0.010 <0.05	<0.015	<0.02	
	<0.05	<0.03	<0.035	
Ni	<0.055	<0.055	<0.055	
Mo	<0.02	<0.02	<0.02	
Δ σ.	<0.05	<0.05	<0.05	
ng Dh	<0.05	<0.05	<0.05	
7 .	~0.10	<0.10	<0.10	
	<0.01	NO.01	<0.01	
SO₄	20	278	0.98	
F	0.75	10.3	0.13	
Cl	<0.20	<0.20	<0.20	
Br	< 0.01			
NO1	0.29	< 0.02	0.19	
HPÓ,	<0.05	< 0.02	<0.05	
В	< 0.02	< 0.02	<0.02	
SiO ₂	32.0	38.6	8.0	
SIO ₂	32.0	38.6	8.0	

. Selected analytical results of surface and groundwater samples from locations within the Osamu Utsumi Mine study site

	Piezometer	Piezometer	
	Station	Station	
Borehole	PM 22	PM 22	
Sample Code No.	PC-GW-19	PC-GW-27	
Sampling Int (m)	0 - 20	0 - 20	
Date Collected	870707	871002	
Temperature (C)	21.5	20.0	
pH (lab)	6.7	6.2	
Cond.(mS/m)	6.0	6.3	
Eh(mV)			
Alkalinity (mg/L HCO ₃)	28	30	
Sum Cations (meq/L)	0.79	0.84	
Sum Anions (meq/L)	0.90	0.93	
Charge Balance %	-12.7	-10.2	

Element

mg/L

			_
	4.00	50	
Ca	4.90	5.0	
Mg	0.37	0.149	
Sr	0.156	0.154	
Ba	0.04	0.043	
Na	0.45	0.417	
K	13.4	13.9	
Li	<0.02	<0.02	
Fe(II)	2.04	2.08	
Fe(tot)	2.23	2.13	
AI	0.034	0.048	
Mn	1.77	1.80	
Zn	<0.02	0.74	
Cd	<0.02	<0.01	
Cu	<0.02	<0.015	
Cr	<0.05	<0.05	
Co	<0.035	<0.035	
Ni	<0.02	<0.02	
Mo	<0.03	<0.03	
Ag	<0.05	<0.05	
Ph	<0.10	<0.10	
7r	<0.01	<0.01	
v	and the second		
II			
SO.	9.97	10.4	
F	4.45	4.15	
CI	<0.20	<0.20	
Br			
NO.		0.04	
HPO.	<0.05	<0.02	
B	<0.02	<0.02	
SiO.	42.0	44.6	
0.02			

Borehole	SW-01	SW-01	SW-01	SW-01	SW-01
Sample Code No	PC-GW-37	PC-GW-46	PC-GW-57	PC-GW-68	PC-GW-75
Sampling Int (m)	3_12	3-12	3-12	3-12	3-12
Date Collected	880707	880607	880921	881202	890316
Temperature(*C)	200202	20.3	21	21	21
nH [field/lab] lab	12 10 0513 05	[3 32/3 16](3 32)	[3 93/3 93]3.45	[3.37/3.29]2.66	[2.35/2.54]2.34
DO(mg/I)	[3,1/2.95]5.05	<0.008	3 27	<0.008	<0.008
D.O. (Ing/L)	834	707	694	627	737
Alkalinity (mg/L HCO)	<50	<0.60	<0.60	<0.60	<0.60
Sum Cations (med/ I)	14.3	12.61	4.57	23.7	32.0
Sum Anions (meq/L)	19.8	26.5	4.83	25.8	55.4
Charge Balance %	-32.1	-20.3	-5.53	-8.64	-53.4
Element		mg/L			
	74.1	150	27	107	72.9
Ca Ma	/4.1 1 66	10 2	2 09	9.25	4.35
Mg S-	4.00	3.6	0.86	3 19	2.38
	1.57	0.026	0.051	0.025	0.02
Da No	1 2	17	1.0	2.0	1.39
K	1.2	32	20	37.7	32
	0.0106	0 024	<0.010	0.24	0.031
Er Fe(II)	1 20	35.2	<0.10	50.5	52.0
Fe(tot)	5.04	36.8	0.011	53.5	171.1
A1	65.5	74.2	10.380	98	112.0
Mn	30.1	52	18	46	41.3
7n	5.80	9.5	1.83	12.8	10.1
Cd	0.016	0.036	< 0.005	0.048	0.056
Cu	< 0.015	< 0.015	< 0.005	<0.005	0.006
Cr	< 0.12	< 0.12	< 0.02	<0.02	0.165
Со	0.052	< 0.035	<0.020	<0.020	<0.020
Ni	0.117	0.265	<0.025	0.29	0.173
Мо	<0.050	<0.050	< 0.035	<0.035	<0.035
Pb	0.176	0.35	<0.090	0.86	0.430
Zr	0.061	0.051	<0.015	0.088	0.417
V		<0.2	<0.2	0.039	<0.2
U	0.7068	[0.9046]5.17	0.432	11.8	24.5
Th		0.290			
SO₄	830	1100	209	1200	2610
F	46	66	8.5	14.9	15
Cl	<1.0	<0.10	<0.20	<2.0	<2.0
Br	<0.050	< 0.050	0.059	<0.05	<0.05
NO ₃	1.48	3.20	1.74	<0.10	3.19
HPO₄	0.26	0.45	< 0.10	<0.1	<0.1
В	<0.020		< 0.015	0.094	0.225
SiO ₂	47	66	32	/2	/4
S*	<0.001	<0.001	<0.001	0.0012	0.0011

Selected	analytical	results	of	groundwater	samples	from	the	Osamu	Utsumi	Mine
----------	------------	---------	----	-------------	---------	------	-----	-------	--------	------

Porchole	sw_m		
Somple Code No	PC-GW-38		
Sampling Int (m)	3_12		
Sampling Int (in)	880203		
Date Collected	200200		
Temperature(C)	2.02		
pH (Iab)	2.95		
Cond.(mS/m)			
En(mv)	-5.0		
Alkalinity (mg/L HCO ₃)	≤ 0.0		
Sum Cations (meq/L)	0.27		
Sum Anions (meq/L)	7.02		
Charge Balance %	-11.01		
Element	mg/L		
			 ······································
Ca	23.30		
Mg	1 41		
Sr	1.41		
Ba	0.020		
Na	20.0		
K.	29.9 -0.015		
	1.02		
	9.52	*	
Fe(tot)	8.33 25 0		
AI	55.2		
Mn	9.14		
Zn	5.20		
	-0.015		
	<0.013		
Cr	0.043		
	0.043		
NI	-0.050		
NIO Dh	0.050		
70 7-	0.064		
Z4 V	0.004		
Y TI	3.42		
0	5.12		
SO.	458		
F	8.98		
Cl	1.1		
Br	<0.050		
NO,	4.05		
HPO.	0.18		
	<0.020		
SiO.	54		
S ²⁻	0.132		
-			

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(*C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	SW-03 PC-GW-39 3-12 880203 22 [3.4] 3.50 4.52 754 <5.0 9.18 11.2 -19.9	SW-03 PC-GW-47 3-12 880607 20.0 [3.57/3.43] 3.41 4.37 786 <0.60 5.06 7.62 -40.3	SW-03 PC-GW-58 3-12 880922 20 [4.43/4.38] 3.92 4.60 657 <0.60 0.715 0.773 -7.85	SW-03 PC-GW-66 3-12 881130 20 [3.45/3.53]3.19 2.73 834 <0.60 5.44 6.95 -24.4	SW-03 PC-GW-76 3-12 890316 21 [2.88/3.06]3.06 5.44 737 <0.60 14.3 21.5 -39.8
Element	<u> </u>	mg/L			
Ca	29.00	24.7	2.5	16.5	38.4
Mg	5.30	3.6	0.85	4.7	7.8
Sr	1.74	1.46	0.25	1.30	2.36
Ba	0.025	0.036	0.095	0.067	0.045
Na	0.69	1.6	0.8	1.0	1.0
K	29	25	12	27.9	34.3
Li	0.0078	<0.015	<0.010	<0.01	0.014
Fe(II)	<0.10	<0.10	<0.10	0.10	<0.10
Fe(tot)	0.14	0.12	<0.10	0.29	1.59
Al	44.8	23	0.790	23.10	72.5
Mn	18.4	12.6	1.0	9.87	20
Zn	6.95	4.17	0.33	4.30	12.5
Cd	0.050	0.037	<0.005	0.027	0.10
Cu	<0.015	<0.015	<0.005	0.025	<0.003
G	<0.12	<0.12	<0.02	<0.02	<0.020
Co	0.047	0.048	<0.020	0.029	0.071
N1	0.050	<0.085	<0.023	-0.032	~0.035
M0 DL	<0.050	<0.050	<0.033	1.01	1 3
PD 7-	1.48	0.90	<0.050	0.0570	0.154
	0.108	0.004 ∠0.2	<0.015	0.020	<0.2
v TT	 2 27	3 11	0.200	577	13.4
Th	<i>L.L1</i> 	0.030			0.24
SO₄	500	338	33.1	321.0	1000

9.3

<2.0

< 0.050

5.26

< 0.05

< 0.001

38

12.4

2.2

<0.050 4.36

0.14

41

0.0062

10.4

<2.0

< 0.05

4.27

0.027

< 0.001

< 0.1

54

3.76

<2.0

< 0.05

4.08

< 0.015

< 0.001

< 0.1

46

0.47

1.00

1.93

< 0.010

< 0.015

< 0.001

21.4

0.010

Selected analytical results of groundwater samples from the Osamu Utsumi Mine

F

Cl

Br

В

SiO2 S²⁻

NO₃ HPO₄

Selected	analytical	results	of surface	water	samples	from	the	Мопо	do	Ferro	study	site
----------	------------	---------	------------	-------	---------	------	-----	------	----	-------	-------	------

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature (°C) pH (Lab) Cand (mS(m))	South Stream PC-SW-04 870729 6.3	North Stream PC-SW-05 870810 4.9	
Eh(mV) Alkalinity (mg/L HCO ₃) Sum Cations (meq/L) Sum Anions (meq/L) Charge Balance %	4 0.07 0.09 -32.4	4 0.10 0.11 -7.5	
Element		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	$\begin{array}{c} 0.15\\ 0.012\\ 0.002\\ 0.003\\ 0.11\\ 2.0\\ <0.02\\ <0.02\\ <0.02\\ <0.004\\ <0.02\\ <0.004\\ <0.02\\ <0.02\\ <0.002\\ <0.015\\ <0.05\\ <0.035\\ <0.02\\ <0.03\\ <0.02\\ <0.03\\ <0.02\\ <0.10\\ <0.01\\ \end{array}$	$\begin{array}{c} 0.20\\ 0.015\\ 0.006\\ 0.005\\ 0.12\\ 2.6\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.02\\ <0.035\\ <0.035\\ <0.02\\ <0.035\\ <0.05\\ <0.10\\\end{array}$	
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂	0.50 <0.01 0.50 <0.02 <0.05 <0.02 9.30	1.5 0.26 <0.01 0.18 <0.05 <0.02 12.0	

Derected MF 10 Sample Code No. PC-GW-12* PC-GW-33 PC-GW-48 Sample Code No. SampleC				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Borehole	MF 10	MF 10	MF 10
Sampling Int (m) 30.70 50.74 50.74 50.74 Date Collected 861212 880127 880608 Temperature (°C) 22 21 pH [field/lab] lab 6.0 [4.60/6.57] 6.21 [6.37/6.77] 5.82 Cond.(mS/m) 534 -93 Alkalinity (mgL HCO ₃) 7.39 12 18.9 Sum Cations (meq/L) 0.121 0.228 0.318 Charge Balance % 57.0 -78.5 -142.8 Element mg/L - - Ca 1.2 0.20 0.09 St 0.05 0.004 0.02 Ba 0.09 50.001 0.002 Na 0.65 0.079 <0.05	Sample Code No.	PC-GW-12*	PC-GW-33	PC-GW-48
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sampling Int (m)	30-70	50-74	50-74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Date Collected	861212	880127	880608
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature (*C)		22	21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature (C)	60	IA 60/6 571 6 21	[6.37/6.77] 5.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cond (mS/m)	0.0	[1.00,0.57] 0.21	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cond.(mo/m)		534	-93
Alkalmity (mg/L hCO3) 1.39 1.2 0.10 0.053 Sum Cations (meq/L) 0.121 0.228 0.318 Charge Balance % 57.0 -78.5 -142.8 Element mg/L Ca 1.2 0.20 <0.05 Mg 0.42 0.02 0.09 St 0.05 0.005 0.004 Ba 0.09 ≤0.001 0.002 Na 0.655 0.079 <0.05 K 0.866 0.14 0.35 Li <0.055 0.53 Fe(ID) 0.55 0.53 Fe(ID) -0.66 0.58 0.54 Al 0.15 0.014 <0.038 Zn <0.033 0.10 0.14 Ca $$ 0.0014 <0.005 Cu <0.02 0.0024 <0.015 Cu <0.02 0.0024 <0.015 Cu <0.02 $<0.025 <0.012 $	En(mv)	7 20	12	189
Sum Alions (meqL) 0.216 0.010 0.035 Charge Balance % 57.0 -78.5 -142.8 Image Balance % S7.0 -78.5 -142.8 Ca 1.2 0.20 <0.05	Alkalinity ($\ln g/L + CO_3$)	7.39	0.010	0.053
Sum Anions (meq/L) 0.121 0.228 0.316 Charge Balance % 57.0 -78.5 -142.8 Element mg/L Ca 1.2 0.20 <0.05 Mg 0.42 0.02 0.09 Str 0.05 0.005 0.004 Ba 0.09 ≤ 0.001 0.002 Na 0.65 0.079 < 0.05 K 0.86 0.14 0.35 Li < 0.015 < 0.015 Via 0.65 0.079 < 0.05 < 0.33 Li < 0.015 < 0.015 K 0.86 0.14 < 0.35 Fe(ID) < 0.55 0.53 Fe(ID) < 0.014 < 0.066 Mn 1.38 0.427 0.338 Zn < 0.022 0.0024 < 0.012 Ca $$ 0.0014 < 0.005 Cu $$ 0.0014 < 0.005 Cu $$ $ 0.0$	Sum Cations (meq/L)	0.210	0.010	0.318
Charge Balance % 57.0 -78.3 -142.5 Element mg/L Ca 1.2 0.20 <0.05 Mg 0.42 0.02 0.09 Sr 0.05 0.005 0.004 Ba 0.09 ≤ 0.001 0.002 Na 0.65 0.079 <0.055 K 0.86 0.14 0.33 Li <0.015 <0.015 Fe(I0) 0.55 0.53 Fe(tot) 0.06 0.58 0.54 Al 0.15 0.014 <0.06 Mm 1.38 0.427 0.338 Zn <0.033 0.10 0.14 Cd <0.0014 <0.005 Quart <0.035 <0.012 <0.002 Mm 1.38 0.427 0.338 Zn <0.02 $<0.002 <0.003 Cu <0.02 <0.003 $	Sum Anions (meq/L)	0.121	0.220	142.8
Element mgL Ca 1.2 0.20 <0.05	Charge Balance %	57.0	-78.5	-142.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Element		mg/L	
Ca 1.2 0.20 0.003 Mg 0.42 0.02 0.09 Sr 0.05 0.005 0.004 Ba 0.09 ≤ 0.001 0.002 Na 0.65 0.079 < 0.055 K 0.86 0.14 0.35 Li < 0.015 < 0.015 Fe(II) 0.55 0.53 Fe(tot) 0.066 0.58 0.54 Al 0.15 0.014 < 0.066 Mn 1.38 0.427 0.338 Zn < 0.033 0.10 0.14 Cd 0.0014 < 0.005 Cu < 0.022 0.0024 < 0.012 Co < 0.035 < 0.002 Ni < 0.022 0.0029 < 0.003 Mg 0.05 - V < 0.035 < 0.022 Ni < 0.022 0.0029 < 0.003 Mg 0.05 -		1.0	0.20	-0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca	1.2	0.20	0.09
Sr 0.03 0.001 0.002 Ba 0.065 0.079 <0.05 K 0.86 0.14 0.35 Li <0.015 <0.015 Fe(II) <0.015 <0.015 Fe(II) <0.015 <0.015 Fe(tot) 0.06 0.58 0.54 Al 0.15 0.014 <0.06 Mn 1.38 0.427 0.338 Zn <0.033 0.10 0.14 Cd 0.0014 <0.005 Cu <0.022 0.0024 <0.012 Cd <0.035 <0.002 Cu <0.022 0.0024 <0.012 Co <0.035 <0.002 Ni <0.022 0.0023 <0.002 Mo <0.022 <0.003 $0.0003 Mo <0.02 <0.045 <0.045 V <0.02 <0.02$	Mg	0.42	0.02	0.004
Ba 0.09 0.001 0.002 Na 0.65 0.079 < 0.05 K 0.86 0.14 0.35 Li < 0.015 < 0.015 Fe(II) 0.55 0.53 Fe(tot) 0.06 0.58 0.54 Al 0.15 0.014 < 0.06 Mn 1.38 0.427 0.338 Zn < 0.033 0.10 0.14 Cd 0.0014 < 0.005 Cu < 0.02 0.0024 < 0.015 Cr < 0.02 0.0024 < 0.012 Co < 0.035 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo < 0.035 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo < 0.050 < 0.050 Zr < 0.045 < 0.045 V $- 0.023$ 0.00086	Sr	0.05	<0.003	0.007
Na 0.63 0.019 60.03 K 0.63 0.019 60.03 Li <0.015 <0.015 Fe(ID) 0.55 0.53 Fe(tot) 0.06 0.58 0.54 Al 0.15 0.014 <0.06 Mn 1.38 0.427 0.338 Zn <0.033 0.10 0.14 Cd 0.0014 <0.005 Cu <0.033 0.10 0.14 Cd 0.0014 <0.005 Cu <0.020 0.0024 <0.015 Cr <0.05 <0.12 0.012 Co <0.035 <0.002 Ni <0.02 0.0029 <0.003 Mo <0.050 <0.050 Zr <0.045 <0.045 V <0.003 0.00006 Th <0.003 0.00006 SO ₄ <0.07 <0.01	Ba	0.09	<u>≤0.001</u>	<0.002
K 0.86 0.14 0.05 Li <0.015	Na	0.05	0.079	0.35
L1 0.013 0.015 Fe(ID) 0.55 0.53 Fe(tot) 0.06 0.58 0.54 Al 0.15 0.014 <0.06 Mn 1.38 0.427 0.338 Zn <0.033 0.10 0.14 Cd 0.0014 <0.005 Cu <0.02 0.0024 <0.015 Cr <0.05 <0.12 0.012 Co <0.035 <0.002 Ni <0.02 0.0029 <0.003 Mo <0.050 <0.050 Ag 0.05 Pb <0.10 <0.100 <0.050 Zr <0.02 <0.045 V <0.2 U 0.003 0.0008 Th 0.07 0.10 S0, 0.07 0.10 F 0.002 <	ĸ	0.80	-0.015	~0.015
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.55	0.53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe(II)		0.55	0.55
AI 0.15 0.014 < 0.030 Mm 1.38 0.427 0.338 Zn < 0.033 0.10 0.14 Cd 0.0014 < 0.005 Cu < 0.02 0.0024 < 0.015 Cr < 0.055 < 0.12 0.012 Co < 0.035 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo < 0.050 < 0.050 Xi < 0.02 0.0029 < 0.033 Mo < 0.050 < 0.050 Zr < 0.050 < 0.050 Zr < 0.045 < 0.045 V $- 0.003$ 0.0008 Th < 0.0006 SO ₄ 0.07 0.10 F 0.007 0.10 SO ₄ 0.002 < 0.050 NO ₅ 0.004 < 0.01 B 0.01 <	Fe(tot)	0.06	0.58	-0.04 -0.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Al	0.15	0.014	0.228
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	1.38	0.427	0.556
Cd 0.0014 0.003 Cu 0.02 0.0024 0.015 Cr 0.05 0.12 0.012 Co 0.035 0.002 Ni 0.02 0.0029 0.003 Mo 0.050 0.050 Ag 0.05 Pb 0.05 Pb 0.05 V 0.045 0.045 V 0.003 0.0008 Th 0.0006 SO ₄ 0.07 0.10 F 0.07 0.10 Br 0.002 0.050 NO ₃ 0.002 0.050 NO ₃ 0.004 0.01 HPO ₄ $ 0.0038$ SiO ₂ 1.2 1.2 1.1 0.0001	Zn	<0.033	0.10	~0.005
Cu < 0.02 0.0024 < 0.013 Cr < 0.05 < 0.12 0.013 Co $$ < 0.035 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo $$ < 0.050 < 0.050 Ag 0.05 $$ $$ Pb < 0.10 < 0.100 < 0.050 Zr $$ < 0.045 < 0.045 V $$ $$ < 0.2 U $$ 0.003 0.0008 Th $$ $$ 0.0006 SO ₄ $$ 0.2 < 0.1 F $$ 0.077 0.10 Cl $$ 0.002 < 0.050 SO ₄ $$ 0.002 < 0.050 NO ₃ $$ 0.002 < 0.050 NO ₃ $$ 0.004 < 0.01 HPO ₄ $$ < 1.0 0.099 B 0.011 < 0.0038 $$ SiO ₂ 1.2 1.2 1.1 S ² - $$ < 0.0005 < 0.0001	Cd		0.0014	<0.005
Cr < 0.05 < 0.12 0.012 Co < 0.035 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo < 0.050 < 0.050 Ag 0.05 Pb < 0.10 < 0.100 < 0.050 Zr < 0.045 < 0.045 V < 0.2 < 0.045 V < 0.2 < 0.045 V < 0.02 < 0.0008 Th < 0.00006 < 0.00006 SO ₄ 0.077 0.10 < 0.00006 SO ₄ 0.007 0.10 < 0.00006 Br 0.002 < 0.050 < 0.0006 NO ₃ 0.004 < 0.01 < 0.009 $= 0.001$ B 0.01 < 0.0038 $= 0.0001$ < 0.0005 < 0.0001	Cu	<0.02	0.0024	0.012
Co < 0.033 < 0.002 Ni < 0.02 0.0029 < 0.003 Mo < 0.050 < 0.050 Ag 0.05 Pb < 0.10 < 0.045 < 0.045 Zr < 0.003 0.0008 V < 0.2 U 0.003 0.00006 SO ₄ 0.2 < 0.1 F 0.07 0.10 Cl 0.007 0.10 Cl 0.007 0.10 Cl 0.007 0.10 Cl 0.002 < 0.050 NO ₃ 0.002 < 0.050 NO ₃ 0.004 < 0.01 HPO ₄ < 1.0 0.09 $=$ B 0.01 < 0.00038 $=$ $< 0.0001 SiO2 1.2 1.2 1.1 < 0.0001 $	Cr	<0.05	<0.12	-0.002
Ni < 0.02 0.0029 < 0.003 Mo < 0.050 < 0.050 Ag 0.05 Pb < 0.10 < 0.100 < 0.050 Zr < 0.045 < 0.045 V < 0.2 U 0.003 0.0008 Th 0.007 SO ₄ 0.2 < 0.1 F 0.07 0.10 Cl 0.84 < 0.10 Br 0.004 < 0.01 HPO ₄ < 1.0 0.099 B 0.011 < 0.0038 SiO ₂ 1.2 1.2 1.1 S² < 0.0005 < 0.0001	Со		<0.035	<0.002
Mo < 0.050 < 0.030 Ag 0.05 Pb < 0.10 < 0.100 < 0.050 Zr < 0.045 < 0.045 V < 0.2 U 0.003 0.0008 Th 0.0006 SO ₄ 0.2 < 0.1 F 0.07 0.10 Cl 0.84 < 0.10 Br 0.004 < 0.01 HPO ₄ < 1.0 0.099 B 0.011 < 0.0038 SiO ₂ 1.2 1.2 1.1 S ² < 0.0005 < 0.0001	Ni	<0.02	0.0029	<0.005
Ag 0.05 $$ $$ Pb <0.10 <0.000 <0.050 Zr $$ <0.045 <0.045 V $$ $$ <0.2 U $$ 0.003 0.0008 Th $$ $$ 0.0006 SO ₄ $$ 0.2 <0.1 F $$ 0.07 0.10 Cl $$ 0.84 <0.10 Br $$ 0.002 <0.050 NO ₃ $$ 0.004 <0.01 HPO ₄ $$ <1.0 0.09 B 0.01 <0.0038 $$ SiO ₂ 1.2 1.2 1.1 S ²⁻ $$ <0.0005 <0.0001	Mo		<0.050	<0.030
p_6 <0.10 <0.100 <0.030 Zr <0.045 <0.045 V $$ <0.2 U 0.003 0.0008 Th 0.0006 SO ₄ $$ 0.0006 F 0.07 0.10 Cl 0.84 <0.10 Br 0.002 <0.050 NO ₃ 0.004 <0.01 HPO ₄ <1.0 0.09 B 0.01 <0.0038 SiO ₂ 1.2 1.2 1.1 S ²⁻ <0.0005 <0.0001	Ag	0.05		
Zr 1 < 0.043 < 0.043 V 1 1 < 0.2 U 1 0.003 0.0008 Th 1 1 0.00006 SO ₄ 1 1 0.00006 F 1 0.07 0.10 Cl 1 0.077 0.10 Cl 1 0.002 < 0.050 Br 1 0.0044 < 0.01 HPO ₄ 1 < 1.0 0.099 B 0.011 < 0.0038 1 SiO ₂ 1.2 1.2 1.1 S ²⁻ 1 < 0.0005 < 0.0001	Pb	<0.10	<0.100	<0.030
V $(0.2)^2$ U0.0030.0008Th0.00006SO ₄ 0.2<0.1	Zr		<0.043	<0.045
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V		0.002	0.0008
Th0.2 < 0.1 SO ₄ 0.070.10F0.070.10Cl0.84 < 0.10 Br0.002 < 0.050 NO ₃ 0.004 < 0.01 HPO ₄ < 1.0 0.099B0.01 < 0.0038 SiO ₂ 1.21.21.1S ²⁻ < 0.0005 < 0.0001	U		0.003	0.0006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Th			0.0000
F 0.07 0.10 Cl 0.84 <0.10 Br 0.002 <0.050 NO3 0.004 <0.01 HPO4 <1.0 0.09 B 0.01 <0.0038 SiO2 1.2 1.2 1.1 S² <0.0005 <0.0001	SO₄		0.2	<0.1
Cl 0.84 <0.10 Br 0.002 <0.050 NO3 0.004 <0.01 HPO4 <1.0 0.09 B 0.01 <0.0038 SiO2 1.2 1.2 1.1 S2 <0.0005 <0.0001	F		0.07	0.10
Br 0.002 <0.050 NO ₃ 0.004 <0.01 HPO ₄ <1.0 0.09 B 0.01 <0.0038 SiO ₂ 1.2 1.2 1.1 S ²⁻ <0.0005 <0.0001	Cl		0.84	<0.10
NO3 0.004 <0.01 HPO4 <1.0 0.09 B 0.01 <0.0038 SiO2 1.2 1.2 1.1 S ²⁻ <0.0005 <0.0001	Br		0.002	<0.050
HPO4<1.0 0.09 B 0.01 < 0.0038 SiO2 1.2 1.2 1.1 S2< 0.0005 < 0.0001	NO ₃		0.004	<0.01
B 0.01 <0.0038 SiO ₂ 1.2 1.1 1.2 0.0005 S ²⁻ <0.0005 <0.0001	HPO4	<u></u>	<1.0	0.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	0.01	<0.0038	
S ²⁻ <0.0005 <0.0001	SiO ₂	1.2	1.2	1.1
	S ²⁻		<0.0005	<0.0001

* This analysis is incomplete and sampling procedures may have given rise to contamination.

Borehole	MF 10	MF 10	MF 10
Sample Code No.	PC-GW-52	PC-GW-69	PC-GW-83
Sampling Int (m)	50-74	50-74	50-74
Date Collected	880912	881206	890405
Temperature(*C)	21	22	22
nH [field/lab] lab	[6 13/6 38] 5 95	[5 91/5 94] 5 63	[6,05/6,10] 6,10
$D \cap (mg/L)$	36	30	43
Eh(mV)	335	448	504
Alkalinity (mg/L HCO)	28	20	30
Sum Cations (medI)	2.0	0.007	0.090
Sum Anions (meq/L)	0.024	0.037	0.090
Charge Balance %	2.12	15 1	7 36
	-3.15	-13.1	7.50
Element		mg/L	
Ca	0.13	<0.035	0.238
Mg	<0.07	<0.070	0.352
Sr	0.007	0.004	0.0050
Ba	0.006	0.004	0.0040
Na	0.5	0.10	0.043
K	1.0	2.2	0.20
Li	<0.10	<0.01	<0.010
Fe(II)	0.65	0.46	0.73
Fe(tot)	0.66	0.52	0.76
Al	<0.050	<0.05	<0.05
Mn	0.309	0.308	0.277
Zn	0.119	0.143	0.124
Cd	<0.005	<0.005	<0.005
Cu	<0.005	<0.005	<0.005
Cr	<0.02	<0.02	<0.020
Со	<0.020	<0.020	<0.020
Ni	<0.025	<0.025	<0.025
Мо	<0.035	<0.035	< 0.035
Pb	<0.090	<0.09	<0.09
Zr	<0.015	<0.0015	<0.015
V	<0.02	<0.0015	<0.2
U	<0.001	0.001	0.001
SO₄	1.0	3.1	1.5
F	0.1	0.2	0.07
Cl	0.79	<2.00	<2.0
Br	0.009	<0.05	<0.05
NO3	0.13	<0.10	<0.10
HPO₄	<0.10	<0.1	<0.1
B	< 0.015	< 0.015	<0.015
SiO ₂	1.2	1.1	1.1
S ²⁻	<0.001		

Borehole	MF 11	MF 11	MF 11	MF 11	MF 11
Sample Code No.	PC-GW-35	PC-GW-49	PC-GW-53	PC-GW-70	PC-GW-82
Sampling Int (m)	30-40	30-40	30-40	30-40	30-40
Date Collected	880128	880613	880914	881212	890404
Temperature (°C)	22	22.8	20	23	22
pH [field/lab] lab	[5.2/6.28] 6.02	[5.12/5.60] 5.71	[5.35/5.24] 5.65	[5.26/6.13] 5.44	[5.31/5.62] 4.96
D.O. (mg/L)	6.4	8.2	7.8	7.5	8.5
Eh(mV)	458	617	585	657	525
Alkalinity (mg/L HCO ₃)	1.0	1.0	0.1	0.6	0.8
Sum Cations (meq/L)	0.040	0.027	0.012	0.022	0.019
Sum Anions (meq/L)	0.053	0.058	0.048	0.012	0.022
Charge Balance %	-27.0	-74.0	-118	58.2	-15.8
Element			mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	0.17 <0.1 0.003 0.010 0.05 0.24 <0.015 0.19 0.24 <0.06 0.183 0.03 <0.005 <0.015 <0.015 <0.012 <0.035 <0.025 <0.050 <0.100 <0.045 	<0.20 0.03 0.002 0.001 0.16 0.19 <0.015 <0.10 0.05 <0.06 0.080 <0.03 <0.005 <0.005 <0.015 <0.12 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.050 <0.050 <0.050 <0.0012 0.0002	<0.07 <0.07 0.004 0.004 0.05 0.14 <0.010 <0.10 <0.10 <0.05 0.048 0.014 <0.005 <0.005 <0.005 <0.02 <0.020 <0.025 <0.035 <0.090 <0.015 <0.2 <0.001	<0.03 <0.07 0.002 0.003 0.05 0.15 <0.01 <0.10 <0.010 0.07 0.053 0.014 <0.005 <0.005 <0.005 <0.02 <0.020 <0.025 <0.035 <0.09 <0.0015 0.001 	<0.03 0.029 0.0015 0.003 0.09 0.16 0.0003 <0.10 <0.010 0.002 0.05 0.05 <0.005 0.004 <0.020 <0.0005 <0.025 <0.0005 <0.002 <0.005 <0.005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005
SO ₄	0.5	<0.1	0.5	<2.0	<2.0
F	0.06	0.11	0.145	0.04	0.1
Cl	0.78	0.99	0.98	<2.0	<2.0
Br	0.0009	<0.050	<0.005	<0.05	<0.05
NO ₃	0.064	0.07	0.06	<0.10	0.25
HPO ₄	<1.0	0.21	<0.10	<0.1	<0.1
B	0.0016		<0.015	<0.015	<0.015
SiO ₂	1.2	1.0	1.1	1.11	1.08
S ²⁻	<0.0005	<0.0001	<0.001	<0.001	<0.001

Selected analytical results of groundwater samples from the Morro do Ferro study site

Borehole	MF 12	MF 12	MF12
Sample Code No	PC-GW-18	PC-GW-34	PC-GW-50
Sampling Int (m)	20-70	45-71	45-71
Date Collected	870707	880128	880614
Temperature (87)	23	23	21
nH (lab)	20	[5 7/6 36] 7 09	[5 99/6 19] 6 55
pn(ab)	7.0	[3.7/0.50] 7.07	
Cond.(ms/m)		303	212
En(IIIV)	12	10.3	212
Alkalinity (mg/L HCO_3)	12	19.5	0.935
Sum Cations (meq/L)	0.33	0.922	0.895
Sum Anions (meq/L)	0.20	0.525	A 22
Charge Balance %	14.8	-0.133	4.52
Element		mg/L	
	1 10	Q 1Q	8.48
Ca	1.18	0.10	0.70
Mg	0.28	0.01	0.346
SI	0.041	0.0007	0.540
Ba	1.05	0.0007	0.84
INA V	1.95	11.0	11.2
	4.1	<0.015	<0.015
	<0.02	1 31	0.74
Fe(tot)	10	1.33	0.79
	1.0	0.22	0.21
Mn	0.48	1.56	1.68
7n	<0.40	0.45	0.27
	<0.035	<0.005	<0.005
	<0.043	<0.015	<0.015
Cr	<0.12	<0.12	<0.12
Co	< 0.035	<0.035	< 0.035
Ni	<0.085	< 0.025	<0.085
Mo	<0.6	<0.050	<0.050
Pb		<0.100	<0.050
Zr		<0.045	<0.045
v			<0.2
U		0.0005	0.00075
Th			0.00007
SO.	0.92	9.41	9.5
F	0.68	7.0	5.3
Cl	1.04	1.5	<0.10
Br	< 0.05	0.0003	<0.050
NO.	<0.1	<0.1	1.0
HPO.	<0.1	<1.0	<0.05
B	<0.02	0.001	
SiO	3.0	33.4	33.4
S ²⁻			<0.001
-			

Borehole	ME 12	MF 12	ME 12
Sample Code No	DC_GW_56	PC_GW_71	PC-GW-85
Sample Code No.	45-71	45_71	45-71
Date Collected	990010	881214	800411
Temperatum(*C)	24	22	22
nel (field/leb) leb	6 12/6 201 6 14	لک ۲۶ 111 ۶ 50	16 22/6 631 6 13
	[0.15/0.20] 0.14	0.22	[0.22/0.05] 0.15
D.O. (mg/L)	0.20	0.52	0.0
En(mv)	212		440
Alkalinity (mg/L HCO_3)	18.7	18.3	23.0
Sum Cations (meq/L)	0.725	1.00	0.768
Sum Anions (meq/L)	0.750	0.95	0.921
Charge Balance %	-3.5	11.1	-15.6
Element		mg/L	
Ca	6.7	9.5	6.75
Mg	0.50	0.72	0.51
Sr	0.22	0.36	0.2
Ba	0.003	0.001	0.0002
Na	0.5	0.70	0.72
K	9.06	11	10.5
	<0.010	<0.01	0.0006
Fe(II)	0.66	0.57	 ^ 557
Fe(tot)	0.08	0.38	0.12
	0.42	0.32	0.12
7-	1.2	1.07	1.45
	0.80	0.20	0.0 ∠0.0005
	<0.005	<0.005	<0.0005
	<0.005	<0.005	<0.0005
	<0.02	<0.02	<u>~0.020</u>
CO Ni	<0.020	<0.020	<0.0005 <0.025
Mo	<0.025	<0.025	0.0007
Ph	<0.035	<0.035	0.016
Ce			0.001
Ph	<0.090	<0.09	0.0007
7r	<0.015	<0.0015	<0.015
V	<0.015	<0.0015	<0.2
T	<0.001	0.001	0.004
Th			0.000029
SO₄	10	9.6	10.1
F	4.4	5.5	6.0
Cl	0.13	<2.0	0.3
Br	<0.005	<0.05	<0.05
NO3	0.02	<0.10	<0.10
HPO₄	<0.010	<0.1	<0.1
В	< 0.015	<0.015	0.019
SiO ₂	30	37	33
S ²⁻	< 0.002		

Borehole	MF 13	MF 13	
Sample Code No	PC-GW-73	PC-GW-84	
Sampling Int (m)	45-71	45-71	
Data Collected	881220	890407	
Date Collected	220	22	
Temperature(C)	[5 45] 5 55	[5 10/5 10] <i>4</i> 70	
pH [neid/lab] lab	[3.43] 3.33	4 00	
D.O. (mg/L)	0.74	4.00	
En(mV)	003	0.34	
Alkalinity (mg/L HCO_3)	0.61	0.34	
Sum Cations (meq/L)	0.071	0.024	
Sum Anions (meq/L)	0.067	0.020	
Charge Balance %	5.50	19.7	
Element		mg/L	
	0.585	<0.035	······································
Ca Ma	<0.585	0.057	
MIS S-	0.002	0.002	
	0.002	0.002	
Da No	0.005	0.05	
INA V	0.12	<0.05	
	<0.01	0,0004	
	<0.10	<0.10	
		<0.10	
Fe(tot)	0.010	0.004	
AI	0.10	0.004	
Min Ze	0.041	<0.0000	
	<0.005	<0.0005	
	<0.005	<0.0003	
	<0.005	<0.001	
	<0.02	<0.020	
	<0.020	<0.005	
N1	<0.025	<0.020	
MO	<0.055	<0.0003	
PD	<0.09	<0.0005	
Zr	<0.0015	<0.0003	
VU	0.0015	0.00045	
10	1.0	~20	
SU₄	1.0	0.16	
F C	-2.00	<2.0	
	<2.00	<0.05	
BL	<0.05	<0.03 0.26	
NO ₃	0.16	0.00	
HPO₄	<0.1	<0.01	
В	<0.015	<0.015	
SiO ₂	2.58	1.18	
S*	<0.001	<0.001	

Appendix 3

Selected analytical results of groundwater samples from the Osamu Utsumi mine and Morro do Ferro study sites.

Borehole Sample (Sampling Date Col Temperat pH (lab) Cond.(mS Eh(mV) Alkalinity	Code No. ; Int (m) lected ture(°C) S/m) y (mg/L HCO	F1(9-1WC11 PC-GW-09 96.5-125.7 861113 20.5 5.8 6.2 325 3) [13]	 F1(9-1WC11) PC-GW-14 96.5-125.7 870106 21.0 5.4 6.0 [12] 	F1(9-1WC11) PC-GW-15 96.5-125.7 870210 20.0 5.5 [13]	F1(9-1WC11) PC-GW-17 96.5-125.7 870506 22.5 5.5 [6.2] 203 [11]
Element	Analytical Method		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 0.41 \ (0.59) \\ 0.11 \ (<\!0.05) \\ 0.09 \ (0.006) \\ 0.42 \ (0.15) \\ 1.29 \\ 7.63 \\ \hline \\ $	$\begin{array}{c} 0.37 \ (0.85) \\ 0.05 \ (< 0.05) \\ 0.10 \ (0.006) \\ 0.45 \ (0.14) \\ 0.57 \\ 10.24 \\ \hline \\ $	0.73 (0.63) <0.14 (<0.1) 0.053 (0.05) 0.15 (0.15) 0.23 13.3 [1.62] [1.67] 1.63 (1.60) <0.06 (<0.1) 0.27 (0.26) 0.11 (0.2) <0.043 (<0.01) <0.12 (<0.02) <0.035 <0.085 (<0.01) <0.60 (<0.02) (<0.10) 	$\begin{array}{c} 0.82 \ (0.75) \\ < 0.14 \ (< 0.10) \\ 0.064 \ (0.07) \\ 0.17 \ (0.16) \\ 0.38 \\ 13.4 \\ < 0.02 \\ [2.03] \\ [2.06] \ (1.94) \\ 0.03 \\ 0.35 \ (0.33) \\ 0.13 \ (0.11) \\ < 0.024 \ (< 0.02) \\ < 0.043 \ (< 0.02) \\ < 0.043 \ (< 0.02) \\ < 0.043 \ (< 0.02) \\ < 0.035 \\ < 0.085 \ (< 0.02) \\ < 0.60 \\ \ (< 0.10) \\ < 0.01 \\ \end{array}$
SO4 F Cl Br NO3 HPO4 B SiO2	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	[19] [0.74] (<0.01) 32.5 (36)	[15.8] [0.47] (<0.02) 32.7 (36.5)	15.4 [16.4] 0.50 [0.59] <0.10 <0.005 <0.05 <0.10 (<0.02) 35.1 (36.0)	18.8 0.55 <0.10 <0.05 <0.02 <0.05 <0.02 (<0.02) 32.1 (33.17)

Values reported from BGS except () = CENA, Piracicaba, and [] Urânio do Brasil, PdeC.

Borehole Sample Samplin Date Co Tempera pH (lab) Cond.(m Eh(mV) Alkalinit	Code No. g Int (m) llected tture (°C) S/m) ty (mg/L HCO ₃)	F1 (9-1WC11) PC-GW-22 96.5-125.7 870820 [20.5] [6.1] [6.1] [220] [8]	F1 (9-1WC11) PC-GW-23 96.5-125.7 870917 [20.4] [5.7] [6.2] [8]	
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 0.51 \ (0.16) \\ 0.043 \\ 0.034 \ (0.03) \\ 0.107 \ (0.04) \\ 0.16 \\ 12.0 \\ < 0.02 \\ [1.12] \\ [1.18] \ (1.06) \\ 0.04 \\ 0.15 \ (0.14) \\ 0.045 \\ < 0.1 \\ < 0.015 \\ < 0.12 \\ < 0.035 \\ < 0.020 \\ < 0.030 \\ \ (< 0.05) \\ \ (< 0.10) \\ < 0.01 \end{array}$	$\begin{array}{c} 0.518 \ (0.18) \\ 0.042 \ (<0.10) \\ 0.035 \ (0.03) \\ 0.108 \ (0.09) \\ 0.196 \\ 12.0 \\ <0.02 \\ [1.24] \\ [1.33] \\ 0.04 \\ 0.14 \ (0.14) \\ 0.036 \ (0.03) \\ <0.01 \ (<0.02) \\ <0.015 \ (<0.02) \\ <0.015 \ (<0.02) \\ <0.035 \\ <0.020 \ (<0.02) \\ <0.030 \\ \hline \ \\ < \\ <0.01 \end{array}$	
SO₄ F Cl Br NO₃ HPO₄ 2B SiO2	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	14.5 0.34 <0.2 <0.02 <0.05 <0.01 (<0.02) 32.53 (36.17)	14.8 0.29 <0.20 <0.02 <0.02 <0.02 32.31	

Chemical analyses of groundwater samples from the Osamu Utsumi Mine

Values reported from BGS except () = CENA, Piracicaba and [] Urânio do Brasil, PdeC.

		and the second		
Borehole Sample C Sampling Date Col Temperat pH [field D.O. (mg Eh(mV) Alkalinity	Code No. Int (m) lected ure(°C) /lab] lab t/L) y (mg/L HCO ₃)	F1 (9-1WC11) PC-GW-40 96.5-125.7 880208 [23] [/5.67] 2.35 0.19 [11.3] <5.0	F1 (9-1WC11) PC-GW-42 96.5-125.7 880601 [21.3] [5.25/5.53] 5.51 [146] [11.4] <5.0	F1 (9-1WC11) PC-GW-51 96.5-125.7 880707 22 4.87/4.06 338 <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	$\begin{array}{c} 0.52 *1.44 \\ < 0.14 *0.032 \\ 0.040 *0.044 \\ 0.111 *0.076 \\ \hline 0.57 \end{bmatrix} 0.19 *0.12 \\ \hline 10.0 \end{bmatrix} 10.9 *7.2 \\ < 0.015 *0.0005 \\ \hline 1.2 \end{bmatrix} \\ \hline [1.23] 1.19 *0.63 \\ 0.07 *0.19 \\ 0.173 *0.12 \\ 0.07 *0.136 \\ < 0.005 *< d.1. \\ < 0.015 *< d.1. \\ < 0.015 *< d.1. \\ < 0.029 *< d.1. \\ < 0.050 *0.0027 \\ < 0.100 *< d.1. \\ < 0.045 *< d.1. \\ \hline \\ \hline [0.0014] \{0.007\} \\ \hline \end{array}$	$\begin{array}{c} 0.43 \ (0.47) \\ 0.06 \ (0.10) \\ 0.041 \ (0.0438) \\ 0.119 \ (0.133) \\ [0.44] \ 0.20 \ (0.23) \\ [11.0] \ 12.6 \ (13.1) \\ < 0.015 \\ [1.26] \ \\ [1.29] \ 1.30 \ (0.14) \\ < 0.06 \ (<0.5) \\ 0.180 \ (0.19) \\ 0.07 \ (0.102) \\ < 0.005 \ (<0.050) \\ < 0.015 \ (<0.050) \\ < 0.015 \ (<0.050) \\ < 0.015 \ (<0.002) \\ < 0.085 \ (<0.003) \\ < 0.050 \ (<0.2) \\ < 0.045 \\ [<0.2] \\ [0.0003] \ 0.0045 \\ < 0.00005 \end{array}$	0.45 ((0.46/0.48)) 0.07 ((0.12/0.07)) 0.044 ((0.045/0.046)) 0.124 ((0.135/0.137)) 0.19 ((<0.20/<0.20)) 12.0 ((13.1/12.7)) <0.010 1.32 ((0.28/0.20)) <0.050 ((<0.5)) 0.104 ((0.19/0.20)) 0.081 ((0.093/0.115)) <0.005 ((<0.05)) <0.005 ((<0.05)) <0.02 ((<0.01)) ((<0.002)) <0.025 ((<0.003)) <0.035 <0.090 ((<0.2)) <0.015 ((<0.001/0.0014))
SO_4 F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP ICP [ISE]	[18.1] 15.80*/8.40 [0.40] 0.43 * 52.5 * <0.050 * <0.10 * 0.18 * <0.020 *0.0025 31 *18.6 [0.005]	[20.0]15.8/15.0 [0.41] 0.31 0.18 <0.050 <0.01 <0.05 30 (37.0) [0.004]	15.5 0.30 1.38 <0.005 0.02 <0.10 <0.015 33 ((37.0/37.2))

Chemical analyses of groundwater samples from the Osamu Utsumi Mine

Values reported from BGS except () = CENA, Piracicaba and [] Urânio do Brasil, PdeC, {} = PUC, Miekeley, (()) = U.S.G.S. data, J.W. Ball, number before slash is on filtered sample, after slash is on unfiltered sample. Alkalinities reported for methyl orange, Gran's titrations. *Values reported from BGS on x40 concentrates.

Borehole Sample (Sampling Date Col Temperat pH [field D.O. (mg Eh(mV) Alkalinity	Code No. Int (m) lected ure(°C) /lab] lab t/L) y (mg/L HCO ₃)	F1 (9-1WC11) PC-GW-54 96.5-125.7 880915 21 [5.35/5.64] 6.08 <0.008 308 [3.10,2.58]7.89	F1 (9-1WC11) PC-GW-63 96.5-125.7 881129 21 [5.37/5.47] 6.08 <0.008 239/207 [13,11.5/7.79]	F1 (9-1WC11) PC-GW-77 96.5-125.7 890320 {890412} 22 [5.27/6.45] 5.27 {5.36} <0.008 217 {301} [3.38,12.2]<5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Rb Cs Pb Zr V U Th	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP ICP ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP (AA)	0.59 (0.82) <0.07 (0.28) 0.060 (0.06) 0.156 (0.16) 0.19 [0.64] 13.30 [11.0] <0.010 [1.76] 1.720 [1.77] (2.09) <0.050 (0.39) 0.260 (0.30) 0.106 (0.12) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.025 (<0.02) <0.025 (<0.02) <0.035 <0.015 (0.15) [<0.2] [<0.2] [<0.035)	0.622 0.077 0.039 0.115 0.229 [0.52] 13.2 [12.2] <0.01 [1.50] 1.21 [1.52] <0.05 0.161 0.067 <0.005 <0.005 <0.005 <0.005 <0.02 <0.025 <0.025 <0.035 < <0.09 <0.0015 <0.2] [0.005] 	$\begin{array}{c} 0.431\\ 0.141 \ \{0.050\}\\ 0.038 \ \{0.038\}\\ 0.112 \ \{0.125\}\\ 0.166 \ [0.49] \ \{0.181\}\\ 14.2 \ [11.0]\\ <0.010 \ \{0.002\}\\ \ [1.14]\\ 1.14 \ [1.17]\\ 0.09 \ \{0.053\}\\ 0.164 \ \{0.125\}\\ 0.066 \ \{0.079\}\\ <0.005 \ \{<0.0005\}\\ <0.005 \ \{<0.0005\}\\ <0.005 \ \{<0.0005\}\\ <0.025\\ <0.035 \ \{0.011\}\\ \{0.026\}\\ \ \{<0.0005\}\\ <0.09 \ \{0.001\}\\ <0.015 \ \{<0.00412\}\\ \\ \{0.000015\}\\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	18.9 [25.5] 0.40 [0.56] 1.09 <0.020 <0.02 <0.10 (<0.31) <0.015 (<0.02) 32 (31.6) [0.0038]	15.1 [17.6] 0.29 [0.25] <2.0 <0.05 <0.10 <0.1 <0.015 33 [0.0056]	18.4 [25.5] 0.68 [0.29] <2.0 <0.05 <0.10 <0.1 <0.015 31 [0.0040]

Values reported from BGS except () = CENA, Piracicaba and [] Urânio do Brasil, PdeC, {} = ICP-MS from Degueldre, PSI. Alkalinities reported for methyl orange, Gran's titrations. (()) = PUC, Miekeley.

Borehole Sample (Sampling Date Col Tempera pH (lab) Cond.(ml Eh(mV) Alkalinit	Code No. g Int (m) llected ture (°C) S/m) y (mg/L HC	F2 (9-1VC24 PC-GW-13 45-60 861215 21.5 5.8 5.7 311 O ₃) [10]) F2 (9-1VC24) PC-GW-16 45-60 870212 21.0 5.8 [13]	F2 (9-1VC24) PC-GW-20 45-60 870724 [21.0] [5.6] 6.0 190 [11]	F2 (9-1VC24) PC-GW-25 45-60 870928 [21.0] [5.66] [6.3] [11]
Element	Analytical Method		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA)	$\begin{array}{c} 1.37 \ (2.10) \\ 0.07 \ (< 0.05) \\ 0.10 \ (0.007) \\ 0.31 \ (0.11) \\ 0.52 \\ 9.26 \\ \hline \\ $	$\begin{array}{c} 1.65 \ (1.32) \\ < 0.14 \ (<0.1) \\ 0.048 \ (0.04) \\ 0.095 \ (0.09) \\ 0.19 \\ 11.3 \\ \hline \\ \hline \\ 0.95] \ 0.89 \ (0.9) \\ 0.35 \ (<0.1) \\ 0.35 \ (<0.1) \\ 0.13 \ (0.11) \\ 0.20 \ (0.21) \\ \hline \\ \hline \\ 0.043 \ (<0.01) \\ (<0.02) \\ < 0.035 \\ < 0.085 \ (<0.01) \\ < 0.060 \\ (<0.02) \\ (<0.01) \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	2.11 (1.91) <0.14 (<0.10) 0.064 (0.07) 0.116 (0.11) 0.14 11.8 <0.02 [0.56] [0.58] 0.28 0.22 (0.20) 0.282 (0.33) <0.01 (<0.02) <0.43 (<0.02) <0.12 (<0.05) <0.035 <0.085 (<0.02) <0.030	$\begin{array}{c} 2.26 \ (1.87) \\ 0.044 \ (<0.10) \\ 0.064 \ (0.07) \\ 0.11 \ (0.09) \\ 0.109 \ [1.46] \\ 11.7 \ [11.0] \\ <0.02 \\ [0.61] \\ [0.73] \\ 0.259 \\ 0.174 \ (0.17) \\ 0.167 \ (0.17) \\ <0.01 \ (<0.02) \\ <0.015 \ (<0.01) \\ <0.12 \ (<0.05) \\ <0.035 \\ <0.036 \\ \hline \\ <0.030 \\ \hline \\ \hline \\ <0.10 \ (<0.10) \\ \{0.0068\} \end{array}$
SO4 F Cl Br NO3 HPO4 B SiO2	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA)	[17] [1.74] (<0.01)_ 31.0 (35.0)	12.6 [11.8] 1.36 [1.88] <0.10 <0.005 <0.010 <0.01 (<0.02) 33.4 (35.7)	14.0 1.96 <0.2 <0.02 <0.05 30.39 (31.03)	12.9 [16.6] 1.72 [2.25] <0.2 <0.02 0.03 0.06 31.03 (33.17)

Values reported from BGS except () = CENA, Piracicaba and [] Urânio do Brasil, PdeC, { } = PUC, Miekeley.

-				
Borehold Sample Samplin Date Co Tempera pH [field D.O.(mg Eh(mV) Alkalinit	e Code No. g Int (m) llected hture(°C) d/lab] lab t/L) ty (mg/L HCO ₃)	F2 (9-1VC24) PC-GW-41 45 - 60 880209 [22] [5.6/6.05] 6.11 0.57 339 [14.8] <5.0	F2 (9-1VC24) PC-GW-43 45 - 60 880602 [21.0] [5.72/6.08] 5.98 0.72 323 [13.3] 6.7	F2 (9-1VC24) PC-GW-60 45 - 60 880923 22 [5.73/5.81] 6.06 0.21 262 6.76 [6.20/9.47]
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) A1 Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	2.28 *0.28 0.17 *0.028 0.063 *0.071 0.110 *0.024 [0.38] 0.14 *0.092 [9.50] 10.8 *6.2 <0.015 *0.0010 [0.98] [1.01] 0.97 *0.74 0.28 *0.038 0.185 *0.10 0.15 *0.049 <0.005 * <d.1. <0.015 *<d.1. <0.025 *<d.1. <0.025 *<d.1. <0.025 *<d.1. <0.050 *0.0065 <0.100 *<d.1. <0.045 *<d.1. <0.045</d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. 	$\begin{array}{c} 2.11 \ ((2.40)) \\ 0.07 \ ((<0.05)) \\ 0.064 \ ((0.779)) \\ 0.104 \ ((0.119)) \\ [0.45] \ 0.13 \ ((<0.20)) \\ [10.7] \ 11.8 \ ((12.5)) \\ <0.015 \\ [1.05] \ \\ [1.11] \ 0.92 \ ((<0.10)) \\ 0.23 \ ((<0.5)) \\ 0.187 \ ((0.21)) \\ 0.11 \ ((0.177)) \\ <0.005 \ ((<0.005)) \\ <0.015 \ ((<0.005)) \\ <0.015 \ ((<0.005)) \\ <0.015 \ ((<0.002)) \\ <0.035 \ ((<0.002)) \\ <0.035 \ ((<0.003)) \\ <0.050 \\ <0.050 \ (<0.2)) \\ <0.045 \\ [<0.2] \\ [0.0014] \ 0.0056 \\ <0.00005 \end{array}$	$\begin{array}{c} 1.80 \ (2.12) \\ <0.007 \ (0.24) \\ 0.061 \ (0.06) \\ 0.104 \ (0.10) \\ 0.18 \ [0.44] \\ 10.80 \ [10.9] \\ <0.010 \\ \hlinecdot = [0.92] \\ 0.881 \ [0.935](1.02) \\ 0.220 \ (0.51) \\ 0.169 \ (0.19) \\ 0.169 \ (0.17) \\ <0.005 \ (<0.02) \\ <0.005 \ (<0.02) \\ <0.005 \ (<0.02) \\ <0.025 \ (<0.02) \\ <0.035 \\ <0.090 \ (0.14) \\ <0.015 \\ \hlinecdot = [<0.001] \\ \cdot = [<0.001] \\ \hlinecdot = [<0.001] \\ \cdot = [<0.001$
SO4 F Cl Br NO3 HPO4 B SiO2 S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP ICP [ISE]	[16.8] 12.6 *11.5/9.15 [12.1] 2.50 <1.0 *1.28 <0.050 *0.006 <0.10 *0.011 0.15 *0.0007 0.078 *0.0018 30 *19.1 [0.004]	[16.0] 12.8/12.1 [2.18] 1.78 <0.10 <0.050 <0.01 <0.05 29 ((35.0)) [0.004]	12.6 [20/17.4] 1.73 [1.83] 0.20 <0.005 0.04 <0.010 <0.015 (<0.02) 30 (30) [≤0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC. *Values reported from BGS on x40 concentrates, () = CENA, Piracicaba. (()) U.S.G.S. data, J.W. Ball.

Borehole Sample Sampling Date Co Tempera pH [field D.O (mg Eh(mV) Alkalinit	code No. g Int (m) llected ture(°C) i/lab] lab g/L) y (mg/L HCO ₃)	F2 (9-1VC24) PC-GW-64 45 - 60 881129 21 [5.88/5.84] 5.75 <0.008 270 [13.0/11.5,20.0/18.7] <5.0	F2 (9-1VC24) PC-GW-78 45 - 60 890320 {890416} 21 [5.90/6.42] 5.73 {5.73} <0.008 191 {262} [12.0,17.5/16.8] 10.1
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U Th Sn Rb Cs La	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP (AA) ICP	2.66 (128.8) 0.070 (4.64) 0.079 (2.28) 0.126 (0.04) 0.142 [0.50] 13.2 [12.4] <0.01 [1.16] 1.19 [1.18] (100.5) 0.27 (5.45) 0.241 (21.16) 0.173 (3.69) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.020 (<0.02) <0.025 (<0.02) <0.025 (<0.02) <0.025 (<0.02) <0.035 < <0.09 (0.18) <0.0015 [<0.2] [0.013] 	2.95 0.070 $\{0.086\}$ 0.009 $\{0.071\}$ 0.131 $\{0.119\}$ 0.099 $[0.49]\{0.141\}$ 15.0 $[12.0]$ <0.010 $\{0.0008\}$ $[1.67]$ 1.45 $[1.70]$ 0.319 $\{0.168\}$ 0.318 $\{0.213\}$ 0.211 $\{0.189\}$ <0.005 $\{<0.0005\}$ <0.005 $\{<0.0005\}$ <0.02 <0.020 $\{<0.0005\}$ <0.025 <0.035 $\{0.005\}$ $\{<0.0005\}$ <0.015 $\{<0.0005\}$ $\{<0.0005\}$ <0.015 $\{<0.0005\}$ $\{<0.0005\}$ <0.0015 $\{<0.0005\}$ <0.0018 $\{<0.0005\}$ $\{<0.0001\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005\}$ $\{<0.0005$
SO₄ F Cl Br NO₃ HPO₄ B SiO₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	12.2 [14.4] 2.16 [2.32] <2.0 <0.05 <0.10 <0.1 (0.62) <0.015 (<0.02) 31 (39.4) [0.0021]	14.2 [23.0] 2.68 [2.45] <2.0 <0.05 <0.10 <0.1 <0.015 29 [0.019]

Values reported from BGS except [] Urânio do Brasil, PdeC. {} = PSI, Degueldre. Alkalinities reported for methyl orange, Gran's titrations.

Borehole Sample Sampling Date Co Tempera pH [field D.O. (m Eh(mV) Alkalinit	c Code No. g Int (m) llected ture(°C) i/lab] lab g/L) y (mg/L HCO ₃)	F3 (9-1NH47) PC-GW-36 50 - 77.6 880201 [22] [5.45/5.29] 3.56 <0.008 [448] [18.4] <5.0	F3 (9-1NH47) PC-GW-45 50 - 77.6 880606 [22.2] [5.21/6.06] 3.99 <0.008 [414] [11.4] <5.0	F3 (9-1NH47) PC-GW-55 ⁶ 50 - 77.6 880916 [22] [5.10/5.28] 2.99 <0.008 [338] [2.65 10.1] <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	74.00 *43.0 3.00 *1.4 1.45 *0.852 0.050 *0.010 [1.49] 0.78 *0.32 [34.2] 33.10 *19.3 <0.015 *0.0034 [53.4] [53.5] 48.6 *23.8 1.85 *1.11 12.3 *6.48 2.02 *1.05 <0.005 *0.0008 <0.015 *0.0014 <0.12 * <0.035 * <d.1. <0.025 *0.0009 <0.050 *<d.1. <0.005 *<d.1. <0.005 *<d.1. <0.005 *<d.1. <0.045 *<d.1. [0.0045] </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. 	$\begin{array}{c} 99.7 \ ((114)) \\ 3.43 \ ((4.09)) \\ 1.99 \ ((2.46)) \\ 0.049 \ ((0.055)) \\ [1.52] \ 0.83 \ ((<0.20)) \\ [39.9] \ 39.5 \ ((42.5)) \\ <0.015 \\ [76.9] \ \\ [11.4] \ 74.4 \ ((74.0)) \\ 3.28 \ ((3.1)) \\ 17.3 \ ((19.5)) \\ 2.86 \ ((3.38)) \\ <0.005 \ ((<0.05)) \\ <0.015 \ ((<0.050)) \\ <0.015 \ ((<0.050)) \\ <0.035 \ ((0.0077)) \\ <0.085 \ ((0.0092)) \\ <0.050 \\ <0.050 \ (<0.2)) \\ <0.045 \\ [<0.2] \\ [0.008] \ 0.0017 \\ 0.0002 \end{array}$	$\begin{array}{c} 102.00 \ (120.5) \\ 3.60 \ (4.41) \\ 2.090 \ (2.12) \\ 0.051 \ (0.05) \\ 0.61 \ [1.95] \\ 42.60 \ [42.5] \\ <0.010 \\ \ [88.7] \\ 78.100 \ [89.9] \ (93.44) \\ 4.180 \ (4.66) \\ 17.700 \ (20.22) \\ 3.150 \ (3.38) \\ <0.005 \ (<0.02) \\ <0.005 \ (0.03) \\ <0.005 \ (0.03) \\ <0.020 \ <0.025 \ (0.03) \\ <0.025 \ (0.03) \\ <0.035 \\ <0.090 \ (0.29) \\ <0.015 \\ \ [<0.2] \\ \ [<0.001] \\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP ICP [ISE]	[360] 442.00 */187 [4.27] 6.44 * 2.9 * <0.050 * <0.10 * <1.0 * 0.078 *0.052 34 *2.38	[605] 510 [6.39] 5.89 0.44 0.084 0.02 <0.05 34 ((46.1)) [<0.0001]	540.0 [630.0] 6.44 [7.66] <0.20 <0.010 0.18 <0.10 (0.74) 0.145 (<0.02) 36 (37.89) [<0.001]

Chemical analyses of groundwater samples from the Osamu Utsumi Mine

Values reported from BGS except [] Urânio do Brasil, PdeC, () = CENA, Piracicaba. Alkalinity is methyl orange, Gran's titration respectively. *Values reported from BGS on x40 concentrates (()) = U.S.G.S. data, J.W. Ball^d indicates duplicates, averaged if within 10 %.

Borehole Sample Sampling Date Co Tempera pH [field D.O. (m Eh(mV) Alkalinit	e Code No. g Int (m) llected tture(°C) i/lab] lab g/L) ry (mg/L HCO ₃)	F3 (9-1NH47) PC-GW-65 50 - 77.6 881130 22 [5.35/5.14] 3.49 <0.008 225 [1.78/9.98] 5.0	F3 (9-1NH47) PC-GW-79 50 - 77.6 890321 {890414} 23 [5.03/5.24] 3.40 {4.93} <0.008 319 {356} [2.06/15.32] (<5.0)
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U Th Rb Cs La	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP (AA) ICP ICP (AA)	122.0 (2.89) 4.16 (<0.10) 2.35 (0.08) 0.049 (0.12) 0.357 $[2.24]$ 469.0 $[44.5]$ <0.01 $[98.9]$ 91.8 $[99.4]$ (1.32) 5.14 (0.54) 20.0 (0.27) 8.77 (0.17) <0.005 $(<0.02)<0.005$ $(<0.02)<0.005$ $(<0.02)<0.020$ $(<0.05)<0.020<0.025$ $(<0.02)<0.025$ $(<0.02)<0.035<==$	131.0 4.33 $\{3.42\}$ 2.56 $\{2.80\}$ 0.044 $\{0.049\}$ 0.942 $[2.30]\{1.07\}$ 46.2 $[46.5]$ 0.017 $\{0.013\}$ $[117.5]$ 1.02 $[118.5]$ 6.54 $\{5.90\}$ 21.50 $\{20.0\}$ 4.26 $\{3.59\}$ <0.005 $\{<0.0005\}$ <0.005 $\{<0.0005\}$ <0.005 $\{<0.0005\}$ <0.025 <0.025 <0.035 $\{0.002\}$ $\{<0.0005\}$ <0.09 $\{0.0008\}$ <0.015 $\{<0.0005\}$ $[<0.2]$ $[<0.2]$ (0.0003} $\{0.103\}$ <0.033
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA)	573.0 [835.0] 5.04 [8.07] <2.0 <0.05 <0.10 <0.1 (<0.043) 0.204 (<0.02) 38 (30.44) [0.0018]	745.0 [985.0] 9.66 [8.81] <2.0 <0.05 0.44 <0.1 0.235 35 [0.0028]

Values reported from BGS except [] Urânio do Brasil, PdeC, () = CENA, Piracicaba. {} = PSI, Degueldre. Alkalinity is methyl orange, Gran's titration respectively. ^d indicates duplicates, averaged if within 10 %.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(°C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		F5 (MI-55) PC-GW-62 275-300 881128 24 [6.25/6.39] 5.56 <0.008 255 [26.5,32.4]<5.0	F5 (MI-55) PC-GW-72 275-300 881220 [6.00] 5.98 <0.008 [31.4,56.1]15.9	F5 (MI-55) PC-GW-80 275-300 890413 {890413} 24 [5.83/6.38] 6.02 {6.16} <0.008 462 {78} [23.5,28.1]16.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th Rb Cs La	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA)	$\begin{array}{c} 15.6 \ (19.8) \\ 0.145 \ (5.28) \\ 0.366 \ (1.33) \\ 0.105 \ (0.06) \\ 0.612 \ [1.04] \\ 13.8 \ [12.4] \\ < 0.01 \\ \ [9.25] \\ 15.2 \ [9.35] \ (0.80) \\ 1.05 \ (25.7) \\ 6.86 \ (10.73) \\ 0.490 \ (4.29) \\ < 0.005 \ (0.04) \\ < 0.005 \ (0.10) \\ < 0.025 \ (0.28) \\ < 0.020 \\ < 0.025 \ (0.06) \\ < 0.035 \\ < 0.09 \ (1.49) \\ < 0.0015 \\ < 0.015 \ [< 0.2] \\ \ [0.008] \\ \\ \\ \\ \\ \\ \\ \end{array}$	11.2 (10.35) 0.249 (0.39) 0.272 (0.25) 0.110 (<0.02) 0.799 [1.28] 13.0 [12.0] <0.01 [9.96] 8.71 [10.59] (8.64) 0.51 (0.75) 3.02 (2.88) 0.182 (0.16) <0.005 (<0.02) <0.005 (<0.02) <0.025 (<0.02) <0.035 <0.09 (0.17) <0.0015 <0.015 [<0.2] [0.011] 	7.88 0.46 $\{0.240\}$ 0.204 $\{0.189\}$ 0.102 $\{0.138\}$ 0.600 $[1.06]\{0.656\}$ 11.6 $[12.0]$ <0.010 $\{0.002\}$ $[6.13]$ 5.68 $[6.27]$ 0.183 $\{0.092\}$ 2.29 $\{2.05\}$ 0.115 $\{0.144\}$ <0.005 $\{<0.0005\}$ <0.025 $\{<0.0005\}$ <0.025 $\{<0.0005\}$ <0.025 $\{<0.0005\}$ <0.025 $\{<0.0005\}$ <0.025 $\{<0.0005\}$ <0.015 $\{<0.0005\}$ <0.015 $\{<0.0005\}$ <0.021 $\{<0.0005\}$ $\{0.002\}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA)	50.9 [55.5] 6.18 [7.14] <2.0 <0.05 <0.10 <0.1 (0.96 0.230 (<0.02) 37 (50.4) [<0.001]	29.7 [31.0] 6.15 [6.17] <2.0 <0.05 <0.10 <0.1 (<0.31) 0.020 (<0.02) 38 (36.5) [<0.001]	20.9 [34.0] 5.50 [6.45] <2.0 <0.05 <0.10 <0.1 <0.015 34 [0.0014]

Values reported from BGS except [] Urânio do Brasil, PdeC. Alkalinities reported for methyl orange, Gran's titration. () = CENA, Piracicaba. { } = PSI, Degueldre.
Borehold Sample Sampling Date Co Tempera pH (lab) Cond.(m Eh(mV) Alkalinit	c Code No. g Int (m) llected ture (°C) S/m) y (mg/L HCO ₃)	9-1UC16 (Pilot PC-GW-21 Hold 870729 [21.02] [5.5] [6.0] [15]	SHAFT PC-GW-28 0-40 871007 [20.05] [5.7] [6.4] [20]	SUPPLY DAM PC-SW-03 [17.5] [6.5] [6.0] [9]	
Element	Analytical Method		mg/L		
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 2.59 \ (2.20) \\ 0.134 \ (<0.10) \\ 0.108 \ (0.10) \\ 0.137 \ (0.12) \\ 0.22 \\ 12.2 \\ <0.02 \\ \hline \\ \\ \ (0.03) \\ 0.71 \ (0.40) \\ 0.203 \ (0.18) \\ 0.121 \ (0.12) \\ <0.1 \ (<0.02) \\ 0.018 \ (<0.02) \\ <0.03 \\ < \\ <0.03 \\ \\ <0.05 \\ <0.2 \ (<0.10) \\ <0.01 \\ \end{array}$	$\begin{array}{c} 59.6 \ (60.0) \\ 2.23 \ (2.34) \\ 1.61 \ (1.60) \\ 0.059 \ (0.05) \\ 1.35 \\ 21.8 \\ < 0.02 \\ [44.5] \\ [44.7] \ (40.89) \\ 7.8 \ (7.55) \\ 12.7 \ (13.54) \\ 0.184 \ (0.20) \\ < 0.01 \ (<0.2) \\ < 0.015 \ (<0.02) \\ < 0.02 \\ < 0.03 \\ < 0.03 \\ \ < 0.05 \\ \ (<0.10) \\ < 0.01 \end{array}$	$\begin{array}{c} 0.14 \ (<\!0.10) \\ <\!0.14 \ (<\!0.10) \\ 0.01 \ (0.01) \\ 0.014 \ (0.01) \\ 0.19 \\ 2.2 \\ <\!0.02 \\ [0.012] \\ [1.14] \ (<\!0.02) \\ <\!0.02 \ (<\!0.05) \\ 0.097 \ (0.08) \\ <\!0.033 \ (<\!0.20) \\ <\!0.033 \ (<\!0.20) \\ <\!0.01 \ (<\!0.02) \\ <\!0.043 \ (<\!0.02) \\ <\!0.035 \\ <\!0.035 \\ <\!0.085 \ (<\!0.02) \\ <\!0.03 \\ \ (<\!0.10) \\ <\!0.01 \end{array}$	
SO4 F Cl Br NO3 HPO4 B SiO2	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	24.9 0.75 <0.20 <0.01 0.29 <0.05 (<0.02) 31.67 (32.31)	278 10.3 <0.20 <0.02 <0.02 (<0.02) 36.81 (40.45)	0.98 0.13 <0.20 0.19 <0.05 (<0.02) 7.92 (8.13)	

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba.

49-11-12-12			
Borehole Sample (Sampling Date Col Temperat pH (lab) Cond.(mS Eh(mV) Alkalinity	Code No. g Int (m) lected ture (°C) S/m) g (mg/L HCO ₃)	Piezometer Station PM 22 PC-GW-19 0 - 20 870707 [21.5] [6.7] [6.0] [28]	Piezometer Station PM 22 PC-GW-27 0 - 20 871002 [20.0] [6.2] [6.3] [30]
Element	Analytical Method	mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP (AA) ICP	$\begin{array}{c} 5.11 \ (4.72) \\ 0.36 \ (0.38) \\ 0.152 \ (0.16) \\ 0.04 \ (0.04) \\ 0.45 \\ 13.4 \\ < 0.02 \\ [2.04] \\ [2.23] \ (1.80) \\ 0.034 \ (<0.05) \\ 0.19 \ (1.77) \\ < 0.033 \ (<0.02) \\ < 0.19 \ (1.77) \\ < 0.033 \ (<0.02) \\ < 0.12 \ (<0.05) \\ < 0.043 \ (<0.02) \\ < 0.043 \ (<0.02) \\ < 0.035 \\ < 0.085 \ (<0.02) \\ < 0.03 \\ \ (<0.10) \\ < 0.01 \\ \\ \end{array}$	5.4 (4.65) $0.749 (0.16)$ $0.154 (0.15)$ $0.043 (0.03)$ 0.417 13.9 <0.02 $[2.08]$ $[2.13] (1.86)$ $0.048 (<0.05)$ $1.80 (1.79)$ $0.74 (0.07)$ $<0.01 (<0.02)$ $<0.015(<0.02)$ $<0.015(<0.02)$ <0.035 $<0.02 (<0.02)$ <0.03 $ (<0.05)$ <0.01 $$ $$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	9.97 4.45 <0.20 <0.05 (<0.02) 41.94 (42.14) 	10.4 4.15 <0.20 0.04 <0.02 (<0.02) 42.37 (44.94)

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba.

Borehole		F4 (8-1UK11)	F4 (8-1UK11)
Sample Code No.		PC-GW-44	PC-GW-59
Sampling Int (m)		76.2 - 200	76.2 - 200
Date Collected		880603	880922
Temperature(°C)		[21.9]	[23]
pH [field/lab] lab		[5.71/6.30] 6.15	[6.47/6.31] 6.27
D.O. (mg/L)		0.263	0.037
Eh(mV)		[400]	255
Alkalinity (mg/L HCO ₃)		[15.8] 10.4	15.5 [24,23]
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	12.5 ((14.1)) 0.46 ((0.70)) 0.281 ((0.346)) 0.063 ((0.074)) [1.00] 0.39 ((<0.20)) [14.0] 14.3 (14.6)) <0.015 [4.22] [4.24] 3.82 ((<0.10)) 1.78 ((1.1)) 5.24 ((5.66)) 0.69 ((0.721)) <0.005 ((<0.005)) <0.015 ((<0.050)) <0.12 ((<0.010)) <0.035 ((0.0022)) <0.085 ((0.0073)) <0.050 ((<0.2)) <0.050 <0.045 [<0.2] [0.0025] 0.0678 0.0001	$\begin{array}{c} 6.54 \ (7.29) \\ 0.29 \ (0.46) \\ 0.137 \ (0.14) \\ 0.056 \ (0.65) \\ 0.29 \ [1.12] \\ 11.50 \ [14.0] \\ < 0.010 \\ \hline \ [5.78] \\ 3.64 \ (4.13) \ [6.03] \\ 0.55 \ (0.91) \\ 2.08 \ (2.21) \\ 0.228 \ (0.25) \\ < 0.005 \ (<0.02) \\ < 0.005 \ (<0.02) \\ < 0.005 \ (<0.02) \\ < 0.02 \ (0.07) \\ < 0.02 \\ < 0.025 \ (<0.02) \\ < 0.025 \ (<0.02) \\ < 0.035 \\ < 0.090 \ (0.17) \\ < 0.015 \\ \hline \\ \hline \end{array}$
SO ₄	IC [N]	[78.0] 46.3	13.6 [14.0]
F	ISE [ISE]	[8.33] 6.78	6.37 [1.83]
Cl	IC	1.95	0.18
Br	IC	<0.050	<0.010
NO ₃	IC	<0.01	0.04
HPO ₄	IC	<0.05	<0.10 (<0.31)
B	ICP		<0.015 (<0.02)
SiO ₂	ICP	37 ((43.9))	39.4 (40)
S ²⁻	[ISE]	[<0.001]	[<0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. (()) = U.S.G.S. data J.W. Ball.

Borehold Sample Sampling Date Co Tempera pH [field D.O. (m Eh(mV) Alkalinit	e Code No. g Int (m) llected ture(°C) d/lab] lab g/L) ty (mg/L HCO ₃)	SW-01 PC-GW-37 3 - 12 880202 [22] [3.1/2.95] 3.05 [834] [<0.60] <5.0	SW-01 PC-GW-46 3 - 12 880607 [20.3] [3.32/3.16] 3.32 <0.008 [702] [<0.60] <5.0	SW-01 PC-GW-57 3 - 12 880921 21 [3.93/3.93] 3.45 3.27 [694] <5.0 [<0.61]
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	74.10 *11.4 4.66 *0.75 1.97 *0.432 0.022 *0.0060 [1.45] 0.87 *0.42 [19.0] 18.90 *9.3 <0.015 *0.0106 [1.20] [5.04] 4.22 *0.45 65.5 *5.1 30.1 * 5.80 *1.16 0.016 *0.003 <0.015 *0.0009 <0.12 * <d1. 0.052 *0.008 0.117 *0.031 <0.050 *<d.1. 0.176 *0.065 0.061 *0.014 [0.7068] </d.1. </d1. 	$\begin{array}{c} 128 \ ((71)) \\ 8.37 \ ((12.2)) \\ 3.39 \ ((3.81)) \\ 0.021 \ ((0.031)) \\ [2.03] \ 1.45 \ ((<0.20)) \\ [33.0] \ 31.2 \ ((35.8)) \\ 0.024 \\ [35.2] \ \\ [36.8] \ 29.6 \ ((9.56)) \\ 74.2 \ ((102)) \\ 45.8 \ ((58.9)) \\ 8.39 \ ((10.7)) \\ 0.025 \ ((0.047)) \\ <0.015 \ ((0.095)) \\ <0.12 \ ((<0.010)) \\ <0.035 \ ((0.135)) \\ 0.224 \ ((0.305)) \\ <0.050 \\ 0.301/0.39 \ ((0.530)) \\ 0.051 \\ [<0.2] \\ [0.9046] \ 5.17 \\ 0.290 \end{array}$	34.30 (40.24) 1.86 (2.32) 0.859 (0.87) 0.051 (0.05) 0.64 [1.36] 18.70 [21.0] <0.010 [<0.10] 0.011 [<0.10](0.54) 9.780 (10.84) 16.9 (18.85) 1.730 (1.92) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.020 <0.025 (<0.04) <0.025 (<0.04) <0.025 (<0.04) <0.035 <0.090 (<0.33) <0.015 [<0.2] [<0.2]
SO4 F Cl Br NO3 HPO4 B SiO2 S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP ICP [ISE]	[780] 878.0 */94.5 [52.3] 41.3 * <1.0 * <0.050 * 1.48 * 0.26 * <0.020 *0.0026 47 *0.70 [<0.001]	[1175] 1135/914 [75.2] 57.5 <0.10 <0.050 3.20 0.45 66 ((105)) [<0.001]	209.0 [375.0] 6.32 [10.75] <0.20 0.059 1.74 <0.10 (<0.31) <0.015 (<0.02) 32 (33.63) [<0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. *Values reported from BGS on x40 concentrates. (()) = U.S.G.S. data J.W. Ball.

Borehole Sample C Sampling Date Col Temperat pH [field, D.O. (mg Eh(mV) Alkalinity	Code No. Int (m) lected ure(°C) /lab] lab t/L) v (mg/L HCO ₃)	SW-01 PC-GW-68 3 - 12 881202 21 [3.37/3.29] 2.66 <0.008 627 <5.0 [<0.61]	SW-01 PC-GW-75 3 - 12 890316 21 [2.35/2.54] 2.34 <0.008 737 <5.0 [<0.60]	
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA)	108.0 (146.5) 7.45 (11.04) 2.97 (3.40) 0.025 (0.03) 1.36 [2.62] 37.7 [38.0] 0.24 [50.5] 46.3 [53.5] (65.49) 83.9 (111.7) 39.4 (53.03) 12.3 (13.24) 0.048 (0.08) <0.005 (0.18) <0.02 (0.78) <0.020 0.260 (0.33) <0.035 0.86 (1.82) 0.088 0.039 [<0.2] [11.8]	72.9 4.35 2.38 0.02 1.39 [2.40] 32.8 [31.5] 0.031 [52.0] 88.3 [171.1] 112.0 41.3 10.1 0.056 0.006 0.165 <0.020 0.173 <0.035 0.436 0.417 [<0.2] [24.5]	
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	1190.0 [1350.0] 14.90 [61.5] <2.0 <0.05 <0.10 <0.1 (2.11) 0.094 (0.02) 72 (94.3) [<0.001]	2610.0 [3290] 1.47 [88.6] <2.0 <0.05 3.19 <0.1 0.225 74 [<0.001]	

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba.

Borehold Sample Samplin, Date Co Tempera pH [field Cond.(m Eh(mV) Alkalinit	e Code No. g Int (m) llected ature(°C) d/lab] lab S/m) cy (mg/L HCO ₃)	SW-02 PC-GW-38 3 - 12 880203 [23] [3.2/] 2.93 [638] [<0.60] <5.0	
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 23.30\\ 2.34\\ 1.41\\ 0.028\\ [2.35] 1.00\\ [39.7] 29.9\\ <0.015\\ [0.33]\\ [2.42] 2.13\\ 35.2\\ 9.14\\ 3.58\\ 0.045\\ <0.015\\ <0.015\\ <0.015\\ <0.015\\ <0.012\\ 0.043\\ 0.044\\ <0.050\\ 0.957\\ 0.064\\\\ [4.01] 3.42\end{array}$	
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA) (ISE, ppb)	[55] 458 [10.7] 8.98 1.1 <0.050 4.05 0.18 <0.020 54	

Values reported from BGS except [] Urânio do Brasil, PdeC.

Borehole Sampling Date Col Tempera pH [field D.O. (my Eh(mV) Alkalinit	Code No. g Int (m) llected ture(°C) i/lab] lab g/L) y (mg/L HCO ₃)	SW-03 PC-GW-39 3 - 12 880203 [22] [3.4/3.23] 3.50 4.52 [754] [<0.60] <5.0	SW-03 PC-GW-47 3 - 12 880607 [20.0] [3.57/3.43] 3.41 4.37 [786] [<0.60] <5.0	SW-03 PC-GW-58 ^d 3 - 12 880922 20 [4.43/4.38] 3.92 4.60 [657] <5.0 [<0.61]
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	$\begin{array}{c} 29.00 *3.98 \\ 5.30 *0.79 \\ 1.74 *0.418 \\ 0.025 *0.0060 \\ [2.00] 0.69 *0.36 \\ [33.4] 24.50 *14.8 \\ <0.015 *0.0078 \\ [<0.10] \\ [0.14] 0.11 *0.29 \\ 44.8 *2.2 \\ 18.4 * \\ 6.95 *1.37 \\ 0.050 *0.0081 \\ <0.015 *0.0008 \\ <0.12 *< d.1 \\ 0.047 *0.007 \\ 0.050 *0.012 \\ <0.050 *< d.1 \\ 1.48 *0.358 \\ 0.108 *0.026 \\ \hline \end{array}$	$\begin{array}{c} 24.7\\ 3.6\\ 1.46\\ 0.036\\ [2.62] 0.62\\ [25.1] 24.5\\ <0.015\\ [<0.10]\\ [0.12] 0.21\\ 23\\ 12.6\\ 4.17\\ 0.037\\ <0.015\\ <0.12\\ 0.048\\ <0.085\\ <0.050\\ 0.96\\ 0.054\\ [<0.2]\\ [1.22] 5.60\\ 0.030\end{array}$	$\begin{array}{c} 2.46 & (2.65) \\ 0.85 & (0.85) \\ 0.248 & (0.26) \\ 0.095 & (0.09) \\ 0.17 & [1.56] \\ 11.80 & [13.3] \\ < 0.010 \\ & [<0.10] \\ < 0.010[<0.10](0.07] \\ 0.790 & (1.18) \\ 0.962 & (1.05) \\ 0.325 & (0.35) \\ < 0.005 & (<0.02) \\ < 0.005 & (<0.02) \\ < 0.025 & (0.02) \\ < 0.025 & (0.02) \\ < 0.025 & (0.02) \\ < 0.035 \\ < 0.090 & (0.21) \\ < 0.015 \\ & [<0.2] \\ & [0.399] \\ \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP ICP [ISE]	[605] 802 */167.7 [10.9] 12.78 * 2.2 * <0.050 * 4.36 * 0.14 * <0.020 *0.0062 41 *4.85	[445] 338 [10.5] 8.12 <2.0 <0.050 5.26 <0.05 38 [<0.001]	33.1 [8.8] 0.48 [0.46] 1.00 0.010 1.93 <0.010 (0.31) <0.015 (<0.02) 21 (21.7) [<0.001]

Chemical analyses of groundwater samples from the Osamu Utsumi Mine

Values reported from BGS except [] Urânio do Brasil, PdeC. Alkalinities reported for methyl orange, Gran's titrations. *Values reported from BGS on x40 concentrates.

^d indicates duplicate analyses, averaged if within 10 % otherwise best value.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(°C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		SW-03 PC-GW-66 3 - 12 881130 20 [3.45/3.53] 3.19 2.73 [834] <5.0 [<0.61]	SW-03 PC-GW-76 3 - 12 890316 (890416) 21 [2.88/3.06] 2.68 (3.4) 5.44 [737] {719} <5.0 [<0.61]
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP (AA)	$\begin{array}{c} 17.8 \ (15.18) \\ 4.7 \ (0.50) \\ 1.30 \\ 0.067 \ (0.10) \\ 0.694 \ [1.30] \\ 27.9 \ [25.5] \\ <0.01 \\ \hline \\ $	38.4 8.20 2.23 0.024 $0.672 [1.39]$ $36.0 [32.5]$ 0.014 [<0.10] 1.18 [1.59] 78.2 28.1 12.5 0.093 <0.005 <0.020 0.071 0.069 <0.035 1.5 0.154 [<0.2] [14.6]
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	321.0 [396.0] 3.59 [3.93] <2.0 <0.05 4.08 <0.1 (0.71) <0.015 (<0.02) 46 (37.4) [<0.001]	1070.0 [1315.0] 10.41 [24.4] <2.0 <0.05 4.27 <0.1 0.027 54 [<0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC. Alkalinities reported for methyl orange, Gran's titrations.

Borehold Sample Samplin Date Co Tempera pH (Lab Cond.(m Eh(mV) Alkalinit	e Code No. g Int (m) llected tture (*C)) S/m) ry (mg/L HCO ₃) Analytical	South Stream PC-SW-04 870729 [6.3] [9]	North Stream PC-SW-05 870810 [4.9] [3] mg/L	
	Method		<u> </u>	
Ca Mg Sr Ba Na K Li Fe(II) Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 0.15 \ (<0.10) \\ 0.012 \ (<0.10) \\ 0.002 \ (<0.01) \\ 0.003 \ (<0.01) \\ 0.11 \\ 1.7 \\ <0.02 \\ [<0.10] \\ [<0.10] \ (<0.02) \\ <0.02 \ (<0.05) \\ <0.004 \ (<0.01) \\ <0.033 \ (<0.02) \\ <0.015 \ (<0.02) \\ <0.015 \ (<0.02) \\ <0.035 \\ <0.020 \ (<0.02) \\ <0.030 \\ \ (<0.02) \\ <0.2 \ (<0.10) \\ <0.01 \end{array}$	$\begin{array}{c} 0.20 \ (<\!0.10) \\ 0.015 \ (<\!0.10) \\ 0.006 \ (<\!0.01) \\ 0.005 \ (<\!0.01) \\ 0.12 \\ 2.6 \\ <\!0.02 \\ [<\!0.10] \\ [<\!0.10] \\ [<\!0.10] \\ (<\!0.02) \\ <\!0.02 \ (<\!0.05) \\ 0.19 \ (<\!0.02) \\ <\!0.033 \ (<\!0.02) \\ <\!0.015 \ (<\!0.02) \\ <\!0.015 \ (<\!0.02) \\ 0.12 \ (<\!0.05) \\ <\!0.035 \\ <\!0.020 \ (<\!0.02) \\ <\!0.030 \\ \ (<\!0.05) \\ <\!0.2 \ (<\!0.10) \\ \end{array}$	
SO₄ F Cl Br NO₃ HPO₄ B SiO₂	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	<0.2 <0.01 1.51 <0.02 <0.05 (<0.02) 9.63 (9.01)	0.36 0.26 <0.01 0.18 <0.05 (<0.02) 11.56 (12.20)	

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba.

Borehole Sample Sampling Date Co Tempera pH [field D. O.(m Eh(mV) Alkalinit	Code No. g Int (m) llected ture(°C) l/lab] lab g/L) y (mg/L HCO ₃)	MF 10 PC-GW-52 50-74 880912 21 [6.13/6.38] 5.95 3.6 335 [2.76,10.7] <5.0	MF 10 PC-GW-69 50-74 881206 22 [5.91/6.70] 5.63 3.0 448 [2.89,9.98] <5.0	MF 10 PC-GW-83 50-74 890405 {890406} 22 [6.05/6.10] 5.61 {5.97} 4.3 504 {488} [3.04,11.2] <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP ICP [COLOR] ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP (AA)	0.13 (<0.1) <0.07 (0.23) 0.007 (<0.01) 0.006 (<0.02) 0.25 [0.20,0.82] <0.60 [0.24/1.02] <0.010 [0.62,0.72] 0.558[0.66,0.73](0.69) <0.050 (0.26) 0.309 (0.32) 0.119 (0.12) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.020 (<0.05) <0.020 <0.025 (<0.02) <0.035 <0.090 (0.22) <0.015 [<0.2] [<0.001] 	<0.035 (9.54) <0.070 (0.43) 0.004 (0.22) 0.004 (0.04) 0.057[0.10,0.12] <0.60[2.00,2.40] <0.01 [0.46] 0.597[0.52](2.8) <0.05 (1.66) 0.308 (3.25) 0.143 <0.005 <0.005 (<0.02) <0.025 (<0.02) <0.020 <0.025 (<0.02) <0.025 (<0.02) <0.035 <0.09 (0.12) <0.0015 <0.0015 [<0.2] [0.001] 	$\begin{array}{c} 0.238\\ 0.352 \ \{0.026\}\\ 0.0050 \ \{0.001\}\\ 0.0040 \ \{0.0015\}\\ 0.043 \ [<0.10] \ \{0.046\}\\ <0.6 \ \ [0.14,0.20]\\ <0.010 \ \{0.0003\}\\ \ \ [0.73]\\ 0.720 \ \ [0.76]\\ <0.05 \ \{0.0065\}\\ 0.277 \ \ \{0.005\}\\ 0.124 \ \ \{0.009\}\\ <0.005\\ <0.005\\ <0.005 \ \ \{0.0026\}\\ <0.020\\ <0.020\\ <0.025\\ <0.035\\ <0.09\\ <0.015\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	<1.0 [5.4] 0.11 [<0.10] 0.79 0.009 0.13 <0.10 (0.43) <0.015 (<0.02) 1.2 (1.26) [<0.001]	3.1 [<5.0] 0.11 [0.19,0.35] <2.00 <0.05 <0.10 <0.1 (0.34) <0.015 1.11 (41.3) [<0.001]	<2.0 [<5.0] 0.07 [<0.10] <2.0 <0.05 <0.10 <0.01 <0.015 1.12

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. Alkalinities reported for methyl orange, Gran's titrations. {} = ICP-MS results from Degueldre, PSI.

Borehole Sample (Sampling Date Col Tempera pH [field D.O. (mg Eh(mV) Alkalinit	Code No. g Int (m) llected ture (°C) l/lab] lab g/L) y (mg/L HCO ₃)	MF 10 PC-GW-12 ⁱ 30-70 861212 6.0 [7.39]	MF 10 PC-GW-33 50-74 880127 [22] [4.6/6.57] 6.21 3.94 [533] [12] <5.0	MF 10 PC-GW-48 50-74 880608 [21.8] [6.37/6.77] 5.82 1.95 [-93] [18.9] <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Ag Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	1.24 (1.19) 0.42 (0.40) 0.05 (0.004) 0.09 (0.03) 0.65 0.86 0.06 (0.06) 0.15 (0.08) 1.38 (1.30) <0.033(<0.02) (<0.02) (<0.05) (<0.10) (-	$\begin{array}{c} 0.20 \ *0.14 \\ <0.1 \ *0.023 \\ 0.005 \ *0.0037 \\ <0.001 \ *0.0062 \\ \hline \end{tabular} \\ \hline ta$	<0.20 (<0.05) 0.11 (0.06) 0.004 (<0.002) 0.002 (<0.005) [0.09] <0.05 (<0.20) [0.35] <1.0 (<0.3) <0.015 [2.31] [2.32] 0.54 (<0.10) <0.06 (<0.5) 0.345 (0.33) 0.11 (0.158) <0.005 (<0.005) <0.015 (<0.050) <0.12 (0.012) <0.035 (<0.002) <0.085 (<0.003) <0.050 (<0.2) <0.050 <0.045 [<0.2] [<0.0003] 0.02008 0.00006
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC/ICP ISE IC IC IC ICP ICP [ISE]	 (0.01) (1.2)	[8.0] <1.00 *0.13/0.13 [0.07] <0.10 * <1.0 *0.84 <0.050 *0.002 <0.10 *0.004 <1.0 * <d.1. <0.020 *0.0038 1.2 *1.04 [<0.0005]</d.1. 	[<5.0] <0.1 [0.11] 0.08 <0.10 <0.050 <0.01 0.09 1.1 (1.1) [<0.0001]

ⁱ This analysis is incomplete and sampling procedures may have given rise to contamination. Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. *Values reported from BGS on x40 concentrates. Alkalinities reported for methyl orange, Gran's titrations.

Borehole Sample Sampling Date Col Tempera pH [field D.O. (mg Eh(mV) Alkalinit	e Code No. g Int (m) llected ture (°C) i/lab] lab g/L) y (mg/L HCO ₃)	MF 11 PC-GW-35 30-40 880128 [22] [5.2/6.28] 6.02 6.4 [458] [26.6] <5.0	MF 11 PC-GW-49 30-40 880613 [22.8] [5.12/5.60] 5.71 8.2 [617] [12.0] <5.0	MF 11 PC-GW-53 30-40 880914 20 [5.35/5.24] 5.65 7.8 585 [0.13,6.95] <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [AA] ICP ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	0.17 *0.15 <0.1 *0.12 0.003 *0.0084 0.010 *0.0028 [0.18] <0.05 *0.047 [0.24] <1.0 *0.23 <0.015 * [0.19] [0.24] 0.02 *0.28 <0.06 *0.016 0.183 *0.16 0.03 *0.029 <0.005 * <d.1. <0.015 *0.0021 <0.12 *<d.1. <0.025 *0.0016 <0.050 *<d.1. <0.050 *<d.1. <0.005 *<d.1. <0.045 *<d.1. <0.045 *<d.1. <0.045 *<d.1.< td=""><td>$\begin{array}{c} < 0.20 \\ 0.03 \\ 0.002 \\ 0.001 \\ [0.16] < 0.05 \\ [0.19] < 1.0 \\ < 0.015 \\ [<0.10] \\ [<0.10] 0.05 \\ < 0.06 \\ 0.080 \\ < 0.03 \\ < 0.005 \\ < 0.005 \\ < 0.015 \\ < 0.015 \\ < 0.015 \\ < 0.015 \\ < 0.035 \\ < 0.035 \\ < 0.035 \\ < 0.050 \\ < 0.050 \\ < 0.045 \\ [<0.2] \\ [0.0003] 0.0012 \\ 0.0002 \end{array}$</td><td><0.07 (0.11) <0.07 (0.24) 0.004 (<0.01) 0.004 (<0.02) 0.03 [0.08] <0.60 [0.14] <0.010 [<0.10] <0.010 [<0.10] (0.03) <0.050 (0.29) 0.048 (0.05) 0.014 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.025 (<0.02) <0.035 <0.090 (0.17) <0.015 [<0.2] [<0.001] </td></d.1.<></d.1. </d.1. </d.1. </d.1. </d.1. </d.1. </d.1. 	$\begin{array}{c} < 0.20 \\ 0.03 \\ 0.002 \\ 0.001 \\ [0.16] < 0.05 \\ [0.19] < 1.0 \\ < 0.015 \\ [<0.10] \\ [<0.10] 0.05 \\ < 0.06 \\ 0.080 \\ < 0.03 \\ < 0.005 \\ < 0.005 \\ < 0.015 \\ < 0.015 \\ < 0.015 \\ < 0.015 \\ < 0.035 \\ < 0.035 \\ < 0.035 \\ < 0.050 \\ < 0.050 \\ < 0.045 \\ [<0.2] \\ [0.0003] 0.0012 \\ 0.0002 \end{array}$	<0.07 (0.11) <0.07 (0.24) 0.004 (<0.01) 0.004 (<0.02) 0.03 [0.08] <0.60 [0.14] <0.010 [<0.10] <0.010 [<0.10] (0.03) <0.050 (0.29) 0.048 (0.05) 0.014 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.025 (<0.02) <0.035 <0.090 (0.17) <0.015 [<0.2] [<0.001]
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC/ICP ISE IC IC IC ICP ICP [ISE]	[11.2] <1.00 *0.12/1.73 [0.06] <0.10 * <1.0 *0.78 <0.050 *0.0009 <0.10 *0.064 <1.0 * <d.1. <0.020 *0.0016 1.2 *0.67 [<0.0005]</d.1. 	[<5.0] <0.1 [<0.10] 0.11 0.99 <0.050 0.07 0.21 1.0 [<0.0001]	<1.0 [5.4] 0.13 [0.16] 0.98 <0.005 0.06 <0.10 <0.015 1.1 (1.2) [<0.001]

Chemical analyses of groundwater samples from the Morro do Ferro study site

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. Alkalinities reported for methyl orange, Gran's titrations. *Values reported from BGS on x40 concentrates.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(°C) pH (lab) D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		MF 11 PC-GW-70 30-40 881212 23 [5/26/6.13] 5.44 7.5 657 [0.58,6.24] <5.0	MF 11 PC-GW-82 30-40 890404 {890408} 22 [5.31/5.62]4.96 {5.51} 8.5 525 {590} [0.77 6.86] <5.0
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP (AA) ICP (AA) {ICP-MS} ICP (AA) {ICP-MS} ICP (AA) {ICP-MS} ICP (ICP-MS} ICP [ICP-MS] ICP (ICP-MS] ICP (AA) ICP-MS} ICP (AA) (ICP-MS) ICP (AA) {ICP-MS} ICP (AA) {ICP-MS} ICP (AA) ICP (AA) ICP (ICP-MS) ICP (AA) ICP (ICP-MS) (AA) {ICP-MS}	<pre><0.03 (<0.10) <0.07 (<0.10) 0.002 (<0.01) 0.003 (<0.02) 0.05 [<0.10] <0.60 [0.15] <0.01 [<0.10] <0.010 [<0.10](<0.02) 0.07 (0.31) 0.053 (0.06) 0.014 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.005 (<0.02) <0.025 (<0.02) <0.025 (<0.02) <0.035 <0.09 (0.15) <0.0015 [<0.2] [0.001] </pre>	<0.035 < $0.070 \{0.029\}$ $0.0020 \{0.001\}$ $0.0030 \{0.0028\}$ < $0.030 [0.12] \{0.057\}$ < $0.6 [0.16]$ < $0.010 \{0.0003\}$ [<0.10] < $0.010 [<0.10]$ $0.103 \{0.0023\}$ $0.063 \{0.034\}$ < $0.050 \{0.050\}$ < $0.005 \{<0.0005\}$ < $0.005 \{<0.0005\}$ < $0.020 \{<0.0005\}$ < $0.025 \{<0.0005\}$ < $0.025 \{<0.0005\}$ < $0.098 \{0.0023\}$ < $0.015 [<0.2]$ [$0.004] \{0.0005\}$ [$0.00003\}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA)	<2.0 [<5.0] 0.04 [0.36] <2.0 <0.05 <0.10 <0.1 (0.31) <0.015 (<0.02) 1.11 (2.31) [<0.001]	<2.0 [<5.0] 0.27 [<0.10] <2.0 <0.05 0.25 <0.1 <0.015 1.08 [<0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba and $\{\}$ = PSI. Alkalinities reported for methyl orange, Gran's titrations.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature (°C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		MF 12 PC-GW-18 20-70 870707 [23] 7.0 12 [18]	MF 12 PC-GW-34 45-71 880128 [25] [5.7/6.36] 7.09 1.66 303 [35.3] 19.3	MF12 PC-GW-50 45-71 880614 [21] [5.99/6.19] 6.55 9.27 212 [34.7] <5.0
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Pb Zr V U Th	ICP ICP ICP [AA] ICP [AA] ICP [COLOR] [COLOR] ICP ICP ICP ICP ICP ICP ICP ICP ICP ICP	$\begin{array}{c} 1.18\\ 0.28\\ 0.041\\ 0.004\\ 1.95\\ 4.1\\ < 0.02\\\\ < 0.02 \ [1.0]\\ < 0.1\\ 0.48\\ < 0.033\\ < 0.024\\ < 0.043\\ < 0.024\\ < 0.043\\ < 0.12\\ < 0.035\\ < 0.085\\ < 0.6\\\\\\\\\\\\\\\\\\\\ $	$\begin{array}{c} 8.18 \ *3.32 \\ 0.61 \ *0.28 \\ 0.301 \ *0.137 \\ <0.001 \ *0.0007 \\ \hline 1.09 \ 0.69 \ *0.30 \\ \hline 10.5 \ 11.5 \ *5.1 \\ <0.015 \ * \\ \hline 1.31 \ \\ \hline 1.33 \ <0.02 \ *0.015 \\ 0.22 \ *0.12 \\ 1.56 \ *0.64 \\ 0.45 \ *0.27 \\ <0.005 \ *$	$\begin{array}{c} 8.16 \ (8.79) \\ 0.62 \ (0.79) \\ 0.329 \ (0.363) \\ < 0.001 \ (< 0.005) \\ [0.97] \ 0.67 \ (0.88) \\ [9.47] \ 11.80 \ (12.4) \\ < 0.015 \\ [0.74] \ \\ [0.79] \ 1.28 \ (< 0.10) \\ 0.21 \ (< 0.5) \\ 1.68 \ (1.75) \\ 0.27 \ (0.343) \\ < 0.005 \ (< 0.005) \\ < 0.015 \ (< 0.050) \\ < 0.015 \ (< 0.050) \\ < 0.015 \ (< 0.002) \\ < 0.085 \ (< 0.003) \\ < 0.045 \\ [< 0.2] \\ [0.0008] \ 0.0007 \\ 0.00007 \end{array}$
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC ISE IC IC IC ICP ICP [ISE]	0.92 0.68 1.04 <0.05 <0.1 <0.1 <0.02 3.0	[13.2] 9.41*4.98/4.08 [5.95] 7.91 * 1.1 *1.94 <0.050 *0.0003 <0.1 *0.0009 <1.0 * <d.1. <0.02 *0.001 33.4 *7.72 0.003</d.1. 	$ \begin{bmatrix} 13.6 \end{bmatrix} 9.7 \\ \begin{bmatrix} 4.96 \end{bmatrix} 5.54 \\ < 0.10 \\ < 0.050 \\ 1.0 \\ < 0.05 \\ \hline & & \\ 33.4 (40.6) \\ \begin{bmatrix} < 0.001 \end{bmatrix} $

Values reported from BGS except [] Urânio do Brasil, PdeC. Alkalinities reported for methyl orange, Gran's titrations. *Values reported from BGS on x40 concentrates. () U.S.G.S. data, J.W. Ball.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(°C) pH [field/lab] lab		MF 12 PC-GW-56 45-71 880919 24 [6.13/6.20] 6.14	MF 12 PC-GW-71 45-71 881214 [6.11] 6.50	MF 12 PC-GW-85 45-71 890411 {890409} 22 [6.22/6.63] 6.13 {6.22}
D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		0.145 212 [18.7,24.6] <5.0	0.265 [18.3,26.8] 23.7	0.60 446 {418} [23.6,31.2] 23.8
Element	Analytical Method		mg/L	
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Rb Cs Pb Zr V U Th	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP [COLOR] ICP (AA) ICP (AA)	5.30 (6.10) 0.38 (0.62) 0.214 (0.23) 0.003 (<0.02) 0.43 [0.80] 9.06 [0.94]? <0.010 [0.66] 0.596 [0.68] 0.240 1.140 0.776 <0.005 <0.005 <0.005 <0.005 <0.022 <0.020 <0.025 <0.035 <0.090 (0.18) <0.015 [<0.2] [<0.001] 	9.56 (9.39) 0.729 (0.71) 0.376 (0.34) 0.001 (<0.02) 0.705 [0.80/0.32] 12.5 [0.4/9.78] <0.01 [0.57] 1.83 [0.58] (1.85) 0.16 (0.47) 1.90 (1.84) 0.288 (0.27) <0.005 (<0.02) <0.005 (<0.02) <0.020 (<0.05) <0.020 <0.025 (<0.02) <0.025 (<0.02) <0.035 <0.09 (0.15) <0.0015 [<0.2] [0.001] 	$\begin{array}{c} 6.75\\ 0.534 \ \{0.499\}\\ 0.2720 \ \{0.126\}\\ <0.0008 \ \{0.00019\}\\ 0.503 \ [0.72/1.04]\\ 10.6 \ [8.40/10.4]\\ <0.010 \ \{0.0006\}\\ \ []\\ 0.557 \ []\\ 0.0226 \ \{0.134\}\\ 1.45 \ \ \{0.495\}\\ 0.399 \ \{0.826\}\\ <0.005 \ \{-0.0005\}\\ <0.005 \ \{-0.0005\}\\ <0.005 \ \{-0.0005\}\\ <0.020 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
SO₄ F Cl Br NO₃ HPO₄ B SiO₂ S ²⁻	IC [N] ISE [ISE] IC IC IC ICP (AA) ICP (AA)	8.7 [14.0] 3.98 [4.83] 0.13 <0.005 0.02 <0.010 <0.015 (<0.02) 30 (30.2) [<0.002]	9.6 [<5.0] 6.80 [4.15] <2.0 <0.05 <0.10 <0.1 <0.015 (<0.02) 37 (37.6) [<0.001]	10.1 [16.8] 5.52 [6.48] <2.0 <0.05 <0.10 <0.1 0.019 33 []

Values reported from BGS except [] Urânio do Brasil, PdeC. Alkalinities reported for methyl orange, Gran's titrations. () = CENA, Piracicaba. {} = ICP-MS results from Degueldre, PSI.

Borehole Sample Code No. Sampling Int (m) Date Collected Temperature(°C) pH [field/lab] lab D.O. (mg/L) Eh(mV) Alkalinity (mg/L HCO ₃)		MF 13 PC-GW-73 45 - 71 881220 [5.45] 5.55 [6.74] [0.61,22.5] <5.0	MF 13 PC-GW-84 45 - 71 890407 23 [5.19/5.10] 4.70 {5.19} [4.00] 659 {632} [0.34,9.36] <5.0
Element	Analytical Method		mg/L
Ca Mg Sr Ba Na K Li Fe(II) Fe(tot) Al Mn Zn Cd Cu Cr Co Ni Mo Rb Cs Pb Zr V U	ICP (AA) ICP (AA) ICP (AA) ICP (AA) ICP ICP [COLOR] ICP (AA) ICP (AA)	$\begin{array}{c} 0.585 \ (<0.10) \\ <0.070 \ (<0.10) \\ 0.002 \ (<0.01) \\ 0.003 \ (<0.02) \\ 0.123 \ [0.24] \\ <0.6 \ [0.48] \\ <0.01 \\ \ [<0.10] \\ 0.010 \ [<0.10](<0.02) \\ 0.16 \ (0.35) \\ 0.041 \ (0.040) \\ 0.030 \ (0.02) \\ <0.005 \ (<0.02) \\ <0.005 \ (<0.02) \\ <0.005 \ (<0.02) \\ <0.005 \ (<0.02) \\ <0.020 \ (<0.05) \\ <0.020 \\ <0.025 \ (<0.02) \\ <0.035 \\ \\ \\ <0.09 \ (<0.10) \\ <0.0015 \ [<0.2] \\ \ [0.001] \end{array}$	<0.035 <0.070 {0.057} 0.0010 {0.003} 0.0020 {0.0039} 0.071 [<0.10]{0.034} <0.6 [<0.10] <0.010 {0.0004} [<0.10] <0.010 [<0.10] 0.094 {0.002} 0.0060 {0.144} <0.050 {0.087} <0.005 {<0.0005} <0.005 {<0.0005} <0.005 {<0.0005} <0.020 <0.020 {<0.0005} {<0.0005} <0.09 {<0.0009} <0.015 {<0.0005} [<0.2] [<0.2] [0.0004]{{0.00047}}
SO ₄ F Cl Br NO ₃ HPO ₄ B SiO ₂ S ²⁻	IC [N] ISE [ISE] IC IC IC IC ICP (AA) ICP (AA)	<2.0 [<5.0] 0.04 [0.64] <2.00 <0.05 0.16 <0.1 <0.015 (<0.02) 2.58 (3.47) [<0.001]	<2.0 [6.4] 0.16 [<0.10] <2.0 <0.05 0.36 <0.01 <0.015 1.18 [<0.001]

Values reported from BGS except [] Urânio do Brasil, PdeC and () = CENA, Piracicaba. Alkalinities reported for methyl orange, Gran's titrations. Appendix 4 Results from long-term monitoring for detection of seasonal patterns.

F1 (9-1WC11), Dec. 1987 - Mar. 1989

86

.

F2 (9-1VC24), Dec. 1987 - Mar. 1989

F3 (9-1NH47), Dec. 1987 - Mar. 1989

F4 (8-1UK11), Dec. 1987 - Mar. 1989

F5 (MI-55), Dec. 1987 - Mar. 1989

F5 (MI - 55), Dec. 1987 - Mar. 1989

SW-01, Dec. 1987 - Mar. 1989

SW-02, Dec. 1987 - Mar. 1989

SW-02, Dec. 1987 - Mar. 1989

SW-03, Dec. 1987 - Mar. 1989

SW-03, Dec. 1987 - Mar. 1989

PIEZOMETER STATION 22, Dec. 1987 - Mar. 1989

PIEZOMETER STATION 22, Dec. 1987 - Mar. 1989

SHAFT, Dec. 1987 - Mar. 1989

MF 10, Dec. 1987 - Mar. 1989

MF 11, Dec. 1987 - Mar. 1989

.

MF 11, Dec. 1987 - Mar. 1989

MF 12, Dec. 1987 - Mar. 1989

MF 12, Dec. 1987 - Mar. 1989

MF 13, Dec. 1987 - Mar. 1989

MF 13, Dec. 1987 - Mar. 1989

List of SKB reports

Annual Reports

1977-78 TR 121 **KBS Technical Reports 1 – 120** Summaries Stockholm, May 1979

1979

TR 79-28 The KBS Annual Report 1979

KBS Technical Reports 79-01 – 79-27 Summaries Stockholm, March 1980

1980

TR 80-26 The KBS Annual Report 1980 KBS Technical Reports 80-01 – 80-25

Summaries Stockholm, March 1981

1981 TR 81-17

The KBS Annual Report 1981 KBS Technical Reports 81-01 – 81-16 Summaries Stockholm, April 1982

1982

TR 82-28 The KBS Annual Report 1982

KBS Technical Reports 82-01 – 82-27 Summaries Stockholm, July 1983

1983

TR 83-77 The KBS Annual Report 1983 KBS Technical Reports 83-01 – 83-76

Summaries Stockholm, June 1984

1984

TR 85-01 Annual Research and Development Report 1984

Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01 – 84-19) Stockholm, June 1985

1985

TR 85-20 Annual Research and Development Report 1985

Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01 – 85-19) Stockholm, May 1986

1986 TR 86-31 SKB Annual Report 1986

Including Summaries of Technical Reports Issued during 1986 Stockholm, May 1987

1987 TR 87-33 **SKB Annual Report 1987**

Including Summaries of Technical Reports Issued during 1987 Stockholm, May 1988

1988 TR 88-32 **SKB Annual Report 1988**

Including Summaries of Technical Reports Issued during 1988 Stockholm, May 1989

1989 TR 89-40

SKB Annual Report 1989

Including Summaries of Technical Reports Issued during 1989 Stockholm May 1990

Stockholm, May 1990

Technical Reports List of SKB Technical Reports 1990

TR 90-01 FARF31 – A far field radionuclide migration code for use with the PROPER package Sven Norman¹, Nils Kjellbert² ¹Starprog AB ²SKB AB January 1990

TR 90-02

Source terms, isolation and radiological consequences of carbon-14 waste in the Swedish SFR repository

Rolf Hesböl, Ignasi Puigdomenech, Sverker Evans Studsvik Nuclear January 1990

TR 90-03

Uncertainties in repository performance from spatial variability of hydraulic conductivities – Statistical estimation and stochastic simulation using PROPER

Lars Lovius¹, Sven Norman¹, Nils Kjellbert² ¹Starprog AB ²SKB AB February 1990

TR 90-04

Examination of the surface deposit on an irradiated PWR fuel specimen subjected to corrosion in deionized water

R. S. Forsyth, U-B. Eklund, O. Mattsson, D. Schrire Studsvik Nuclear March 1990

TR 90-05

Potential effects of bacteria on radionuclide transport from a Swedish high level nuclear waste repository

Karsten Pedersen

University of Gothenburg, Department of General and Marine Microbiology, Gothenburg January 1990

TR 90-06

Transport of actinides and Tc through a bentonite backfill containing small quantities of iron, copper or minerals in inert atmosphere

Yngve Albinsson, Birgit Sätmark, Ingemar Engkvist, W. Johansson Department of Nuclear Chemistry, Chalmers University of Technology, Gothenburg April 1990

TR 90-07

Examination of reaction products on the surface of UO, fuel exposed to reactor coolant water during power operation

R. S. Forsyth, T. J. Jonsson, O. Mattsson Studsvik Nuclear March 1990

TR 90-08

Radiolytically induced oxidative dissolution of spent nuclear fuel

Lars Werme¹, Patrik Sellin¹, Roy Forsyth² ¹Swedish Nuclear Fuel and waste Management Co (SKB) ²Studsvik Nuclear May 1990

TR 90-09

Individual radiation doses from unit releases of long lived radionuclides Ulla Bergström, Sture Nordlinder

Studsvik Nuclear April 1990

TR 90-10 Outline of regional geology, mineralogy and geochemistry, Poços de Caldas, Minas Gerais, Brazil

H. D. Schorscher¹, M. E. Shea² ¹University of Sao Paulo ²Battelle, Chicago December 1990

TR 90-11

Mineralogy, petrology and geochemistry of the Poços de Caldas analogue study sites, Minas Gerais, Brazil I: Osamu Utsumi uranium mine

N. Waber¹, H. D. Schorscher², A. B. MacKenzie³, T. Peters¹ ¹University of Bern ²University of Sao Paulo ³Scottish Universities Research & Reactor Centre

(SURRC), Glasgow December 1990

TR 90-12

Mineralogy, petrology and geochemistry of the Poços de Caldas analogue study sites, Minas Gerais, Brazil II: Morro do Ferro N. Waber University of Bern December 1990

TR 90-13

Isotopic geochemical characterisation of selected nepheline syenites and phonolites from the Poços de Caldas alkaline complex, Minas Gerais, Brazil M. E. Shea Battelle, Chicago December 1990

TR 90-14

Geomorphological and hydrogeological features of the Poços de Caldas caldera, and the Osamu Utsumi mine and Morro do Ferro analogue study sites, Brazil D. C. Holmes¹, A. E. Pitty², R. Noy¹ ¹British Geological Survey, Keyworth ²INTERRA/ECL, Leicestershire, UK

December 1990