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Abstract. 

The specific surface areas and distribution ratios for sorption 

of 85 sr, 137cs and 152Eu were measured for crushed and intact 

granitic rock. 

The experimental data can be accommodated by a sorption model 

encompassing sorption on outer and inner surfaces. It is 

clearly demonstrated that the time required to obtain reliable 

Kd-values for the sorption of strongly sorbing radionuclides 

like 252 Eu is very long due to solution depletion and slow 

diffusion into the rock. 

A combination of surface area measurements and batch sorption 

with small particles may therefore be preferable when studying 

strongly sorbing nuclides. 
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1 . INTROD~CTION. 

The major driving force for migration of radionuclides from a 

repository for radioactive waste is advection by ground wa~er. 

It is expected that the radionuclide will move with a velocity 

lower than the velocity of water 

v = u/R 

where vis the velocity of the radionuclide 

u is the velocity of water 

R is the retardation factor. 

The retardation may be due to electrostatic or chemical bonding 

between the radionuclidic species and the solid in contact with 

the aqueous phase i.e. what is generally called sorption. 

The sorption is empirically characterized by the distribution 

coefficient Kd defined by: 

where Cr = nuclide concentration in rock 

Cw= nuclide concentration in aqueous phase. 

In a very simple approach the retardation for radionuclide 

transport in a single fracture may be described by the eq~a~:on 

R = 1 + Ka'A/V 



where A= wetted surface area of the f~acture 

V = void volume of fracture 

Ka (crn 3 ·cm- 2 ) = surface area based distribution 

coefficient 

L 

The study of radionuclide sorption in the far field is thus ar. 

important part of the overall investigations needed for the 

assessment of potential sites for radioactive wastes disposal. 

Measurements of sorption on geological material have been 

carried out on crushed as well as intact rock by the means of 

several techniques e.g batch sorption, through diffusion and 

high pressure convection (Berry el al., 1988). 

Sorption is known to depend on the chemical conditions e.g 

temperature, pH, concentration of complexing agents and in 

batch experiments also on the water: rock ratio and the 

particle size range. 

In our previous sorption work with crushed granite the particle 

size dependence was accommodated by a sorption model based on 

the assumption that the crushed rock consists of porous spheres 

with outer and inner surfaces available to interaction with the 

aqueous phase (Eriksen and Locklund, 1987). This raises the 

question whether the specific surface area of the rock as 

determined by e.g. a B.E.T. technique can be used as a ~easure 

or "index" for the sorption capacity of the rock as suggested 

by Jackson (1988). 

This paper presents data from surface area a~d stro~tiu~, 

cesium and europium sorptior. ~easu~er.e~ts o~ crusted and intact 

granitic material. The aim of the st~dy was to see 1f the 



sorption capacity can be correlated to the specific surface 

areas. 

2 . EX?ERlMENTAL. 

2. 1. Material. 

The rock samples used in th~s study are granitic rocks with 

varying porosity and mineral content. 

Radionuclides ( 85 sr, 137cs , 152 Eu) in acidic solutions were 

obtained from Amersham International. The spiked solutions were 

prepared by diluting aliquots of the stock solutions with 

artificial groundwater synthesized to represent the natural 

groundwater in contact with granitic rock (Table 1). The 

radionuclide concentrations used were 85sr 10- 10 , 137cs 10- 9 

and 152 Eu 10- 8 mol·dm- 3 . 

2.2 Sorption. 

2.2.1 Crushed material: The rock was crushed using Agat mortar 

and pestle. The crushed material was ultrasonically 

disaggregated and size sorted by wet sieving into the required 

size fractions. 100 mg rock (dry weight) was equilibrated with 

3 cm 3 solution in polypropylene tubes, the tubes being gently 

agitated at ambient temperature ( "-' 20°c). ;,.t chosen tir:e 

intervals tubes containing each size fraction were re~oved and 

the solutions vacuurnfiltered using a Mil!ipore sa~p!ing 

manifold with 0.5 urn polypropylene fi!ters. 

The activity of the solid phase and the fi:tered sol~tion ~as 

measured by Y-spectrometry using a (2-x2 in) well type NaI 



detector connected to a multichannel analyzer. The a~ount of 

radionuclide sorbed on the tube walls was counted and corrected 

for. 

2.2.2 Rock ccupons: The granite was cut into 16xl4x4 mm 

coupons. The coupons were washed with distilled water in a 

ultrasonic bath to remove fine particles, dried and evacuated 

before being saturated with groundwater. A typical experiment 

employed approximately 10 g rock (dry weight) and 50 cm 3 

radionuclide solution. 100 ul samples of the solution were 

removed at chosen time intervals, diluted to 5 ml and counted. 

2.3 Surface measurements. 

The total surface areas of crushed rock and rock coupons were 

measured using a Micromeritics Flowsorb II 2300 apparatus, 

applying N2 as the sorbinq gas. 

3. SORPTION MODEL. 

It is assumed that crushed rock consists of spherical particles 

(Vandergraaf and Abry, 1982) with both outer and inner surfaces 

accessible for interaction with the solution. It is further 

assumed that the inner surface area 1s proportional to the 

pa~ticle volume. 

The surface area to volume ratio of a spherical particle with 

diameter dis given by the relationship 

A/V =6/d ( 3 . l ) 



and the specific surface area of crushed rock can th~s be 

written 

A(t) = A(v) + A(s) · (6/cd) ( 3. 2) 

where A(t) = total surface area (m2·g-l) 

A{v) = inner surface area (m2·g-l) 

A(s) = outer surface area { m 2 · cm - 2 ) 

d = particle diameter (cm) 

0 = rock density (2.61 g · cm- 3 ) 
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Correspondingly the distribution coefficient Kd is given by tte 

equation 

Kd = Kd ( v) + Kd ( s ) · ( 6 / pd ) ( 3 . 3 ) 

4. EXPERIMENTAL RESULTS. 

4 .1 Surface areas. 

The specific surface areas measured on crushed rock are plotted 

versus 1/d in Figs 1-5. The diameter d characterizing each size 

fraction is taken to be the arithmetic mean of the apertures of 

the sieves bracketing the various size fractions. 

The surface areas calculated by linear regression are given in 

Table 2. together with the surface areas o: the co~?o~s. 
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4.2 Sorption. 

The sorption data are presented as measured distribution ratios 

(Rd) and not the more strictly defined Kd. 

4.2.1 85sr sorption: The results from the 85 sr experiments 

with crushed rock are plotted in Figs 6-9 and the Rd(v) values 

obtained by linear regression are given in Table 3. 

The experimental Rd values,obtained in sorption experiments 

with coupons, are plotted versus contact time in Figs 10-14 and 

the Rd values obtained after ~120 days are given in Table 3. 

4.2.2 137cs sorption: The Rd values mesured at differing times 

of contact between the radionuclide solution and coupons of 

Stripa granite are depicted in Fig 15. As can be seen 

equilibrium is not reached after 120 days. 

4.2.3 152Eu sorption: Sorption experiments were only carried 

out with crushed rock. The experimental results are summarized 

in Table 4 and the Rd versus time and Rd versus 1/d plots are 

depicted in Figs 16-17. 

5 • DISCUSSION. 

The surface related distribution coefficients for the inner and 

outer surfaces of the crushed rock are given by the ratios of 

the the intercepts and slopes respectively obtained by linear 

regression analysis of the Rd and A versus 1/d plots. 



The calculated Ra(v), Ra(s) and Ra values for BSsr sorptior. or. 

crushed and intact (coupons) rock respectively are su~~arized 

in Table 5. The experimental uncertainty is rather large, ~ut 

the data clearly indicate that Ra(v) and Ra(s) are of the same 

magnitude. Moreover,there is no systematic variation between Ra 

obtained in the coupon experiments and Ra(v),Ra(s) obtained 

using crushed rock. It ought to be emphasized that the 

calculation of Ra is based'on the specific surface of the 

coupon i.e. both outer and inner surfaces are included. The 

geometric surface to volume ratio is however small, 

corresponding to a 1/d value of 0.43 in the plots for 

crushed rock. 

As can be gleaned from the 137cs plot in Fig 15 sorption 

equilibrium was not obtained during 120 days of contact between 

the solution and the rock coupons. The stronger sorption of 

137cs as compared to 85sr causes more radionuclide depletion in 

the solution. Also more radionuclide must diffuse into the rock 

and the time required is therefore longer. 

The attainment of equilibrium in sorption experiment with 

152 Eu requires very long time as can be seen from Figs 16, 17. 

This is to be expected as 152 Eu is strongly sorbed and the 

depletion of the solution results in a very slow diffusion into 

the rock and thereby redistribution of 152 Eu on all s~rfaces. 

Extrapolating the Rd versus time plot for the 125-250 pm 

fraction, an equilibrium value of approxi~ately 280 crn 3 ·g- 1 

seems reasonable. The calculated Rd(v) and Rd(s) "(6/pd) values 

for the 125-250, 250-500 and 1000-2000 µm fractions are given 

in Table 6. It should be noted that fitting the Rd values 
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obtained after 240 hours ·by linear regression, which rray see~ 

reasonable in view of the experimer.tal uncertainties, assuming 

sorption on the outer surface only result in an overestimate of 

Kd(s). 

The distance l diffused into rock in time t is approximately 

given by l = (Dit/ E + Rd) 1/ 2 , where Di is the intrinsic 

diffusion coefficient and E is the porosity of the rock. 

If it is assumed that equilibrium is reached within the 125-250 

pm fraction after 15 days we estimate that at least 165 and 960 

days are required to reach equilibrium for the 500-750 and 

1000-2000 pm fractions respectively. 

6 • CONCLUSIONS. 

1 ) Measurements of the specific surface area of crushed 

granitic rock indicate that the assumption of spherical 

particles with an inner surface area A(v) proportional to the 

particle volume is reasonable. 

The A(v) obtained from plots of total surface area versus 1/d, 

where dis diameter of particle, is in agreement with A(v) 

values obtained by measurements on granite coupons. 

2) The measured distribution ratios Rd for 85 sr and 137cs 

sorption on crushed rock can accomrr~da~ed by a sorption mode: 

based on the assumption of porous particles. 

3) The time required to determine reliable Kd-values for 

the strongly sorbing 132 Eu is very long, even for srrall 

particles. 



An estimate of Rd-values for intact rock may therefore 

preferably be based on combining measurements of specific 

surface areas of crushed and intact rock with batch sorption 

experiments using size fractions with small diameter. 

9 
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Table 1 

Composition of artificial ground watera>. 

Species 

HCO -3 

so 2 -4 

c1-

Si02 

Concen~ration 
mg·drn-

123 

9.6 

70 

12 

Species 

ca 2 + 

Mg2+ 

K+ 

Na+ 

a) pH 8 - 8.2, Eh 260 mV (aerated) 

Concen§ration 
mg·dm-

18 

4.3 

3.9 

65 

11 



Table 2 

Surface areas of crushed granite and granite coupons, 
measured by N -sorption. The particle size is defined 
by the partic!e diameter d(cm), i.e. assuming spherical 
particles. 

12 

Granite Surface area rn 2 ·g-l 
(crushed rock) 

Surface area rn 2 ·g-l 
(rock coupons) 

Stripa (0.25±0.02)+(2.4±0.6)·10-3 ·1/d 

Pingsta- (0.3±0.04)+(2.l±l.l) ·10- 3 ·1/d 
berg 

M-73002 (0.074±0.009)+(1.4±0.3)"10- 3 ·1/d 

85004 (0.061±0.0026)+{3.85~0.76)·10- 3 ·1/d 

85015 (0.21±0.0015)+(1.57±0.l)·lo- 3 ·1/d 

0.205±0.005 

0.28±0.01 

0. 1± 0. 0 0 5 

0.08±0.005 



Table 3 

Distribution ratios Rd for 85 sr sorption on inner 
surfaces of crushed and intact (coupons) granitic 
rock. 

Granite 

Sr-85 

Stripa 

Pingstabe:-g 

73002 

85004 

85015 

Cs-137 

Stripa 

Rd(V)(crn 3 ·g- 1 ) 
(crushed) 

5. 1::: 0. 3 

5. 6± 0. 7 

2.13!0.3 

3.20±0.38 

10.7±2.6 

33± 5 

Rd(crn 3 ·g- 1 ) 
(coupons) 

2.3:::0.3 

2.9±0.4 

2.0±0.1 

1.6:::0.2 

1 3 



Table 4 

Distribution ratios for Eu-152 sorption on crushed Stripa 
granite after differing time of contact with spiked 
solution. 

Fraction 

lh*) 24h*) 96h*) 240h*) 

63-90 130.7 16. 95± 0. 3 

90-125 93.01 14.75±0.3 

125-250 53.33 11.2±0.3 88.56 194.86 264.5 

250-500 26.67 8. 9 ::0. 2 

500-750 16.0 7. 9 zO. 3 53.92 82.11 107.9 

750-1000 11.43 6.7±0.15 

1000-2000 6.67 23.2 40.9 47.4 

* ) time of contact with spiked solution. 
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Table 5 

Surface-related distribution ratios Ra(s), Ra(v) 
for sorption in outer and inner surfaces respec
tively of crushed and intact granitic rock. 

Granite 

Sr-85 

Stripa 

Pingstaberg 

M-73002 

85004 

85015 

Cs-137 

Stripa 

Eu-152 

crushed 

Ra ( v) • 1 o4 

cm 3 ·crn- 2 

20.4:::2.7 

18.7±3.4 

28.8±5.4 

52.5±23.2 

51±12.4 

132 ±2 7 

740 

* Equilibrium not obtained 

crushed 

Ra(s)'l0 4 

crn 3 ·cm- 2 

30.8±12.5 

13±9 

10.8±2.3 

10.1±2 

66± 26 

259±104 

740 

coupons 

Ra· 10 4 

11 . 2:: 1 . 5 

10.4±1.5 

20±1.4 

20:::2.8 

> 2 4 * 

15 



Tab.:e 6 

Calculated distribution coefficient Rd(v), Rd(s) for sorption 
of Eu-152 on crushed Stripa granite, assumi .. g equilibrium 
within the 63-125 µm fraction after 10 days sorption. 

1/d 

Fraction 

125-250 53.33 

500-750 16 

1000-2000 6.67 

0. 2 5± 0. 03 

0. 2 5± 0. 03 

0. 2 5± 0. 03 

A( s) 

(6/Pd) 

m2·g-l 

0.128±0.048 

0 • 0 3 8 4± 0 . 0 14 

0.016±0.0058 

Rd(v) 

185 

185 

185 

Rd(s) 

(6/pd) 

95 

28.45 

11.85 

16 
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FIGURE LEGENDS. 

Fig. 1 

Specific surface area of crushed Stripa granite plotted versus 

1/d, where dis a diameter characterizing the particle size 

fraction. 

Fig. 2 

Specific surface area of crushed Pingstaberg granite plotted 

versus 1/d, where dis a diameter characterizing the particle 

size fraction. 

Fig. 3 

Specific surface area of crushed 73002 granite plotted versus 

1/d, where dis a diameter characterizing the particle size 

fraction. 

Fig. 4 

Specific surface area of crushed 85004 granite plotted versus 

1/d, where dis a diameter characterizing the particle size 

fraction. 

Fig. 5 

Specific surface area of crushed 85015 granite plotted versus 

1/d, where dis a diameter characterizing the particle size 

fraction. 
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Fig. 6 

Distribution ratio Rd for 85 sr sorption on crushed Pingstaberg 

granite plotted versus 1/d, where dis a diameter 

characterizing the particle size fraction. 

Fig. 7 

Distribution ratio Rd for 85sr sorption on crushed 73002 

granite plotted versus 1/d, where dis a diameter 

characterizing the particle size fraction. 

Fig. 8 

Distribution ratio Rd for 85sr sorption on crushed 85004 

granite plotted versus 1/d, where dis a diameter 

characterizing the particle size fraction. 

Fig. 9 

Distribution ratio Rd for 85sr sorption on crushed 85015 

granite plotted versus 1/d, where dis a diameter 

characterizing the particle size fraction. 

Fig. 10 

Distribution ratio Rd for 85sr sorption on intact Stripa 

granite plotted versus time of contact with radionuclide 

solution ('"'16x14x4 mm coupons). 

Fig. 11 

Distribution ratio Rd for 85 sr sorption on intact Pingstaberg 

granite plotted versus time of contact with radionuclide 

solution (~16x14x4 mm coupons). 
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Fig. 12 

Distribution ratio Rd for 85 sr sorption on intact 73002 granite 

plotted versus time of contact with radionuclide solution 

(~16xl4x4 mm coupons). 

Fig. 13 

Distribution ratio Rd for ·85sr sorption on intact 73002 granite 

plotted versus time of contact with radionuclide solution 

(~16xl4x4 mm coupons). 

Fig. 14 

Distribution ratio Rd for 85sr sorption on intact 85004 granite 

plotted versus time of contact with radionuclide solution 

(~16x14x4 mm coupons). 

Fig. 15 

Distribution ratio Rd for 137cs sorption on intact Stripa 

granite plotted verus time of contact with radionuclide 

solution (~16xl4x4 mm coupons). 

Fig. 16 

Distribution ratio Rd for 152 Eu sorption on crushed Stripa 

granite plotted versus time of contact with radionclide 

solution 

O 125 - 500 urn, A 500 - 700 urn 

0 1000 - 2000 urn 



Fig. 17 

r I 
C.'"' 

Distribution ratio for Rd for 152Eu sorption on crushed Stripa 

granite plotted versus 1/d, where dis a diameter 

characterizing the size fraction 

contact time: O lh, 6 24h, C 96h, X 240h. 
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