

TECHNICAL REPORT

GWHRT - A flow model for coupled groundwater and heat flow

Version 1.0

Roger Thunvik ${ }^{1}$, and Carol Braester ${ }^{2}$
${ }^{1}$ Royal Institute of Technology, Stockholm, Sweden
${ }^{2}$ Israel Institute of Technology, Haifa, Israel

April 1988

```
GWHRT - A FLOW MODEL FOR COUPLED GROUNDWATER AND
HEAT FLOW
Version 1.0
Roger Thunvik}\mp@subsup{}{}{1}\mathrm{ and Carol Braester }\mp@subsup{}{}{2
1 Royal Institute of Technology, Stockholm, Sweden
2 Israel Institute of Technology, Haifa, Israel
April }198
```

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Information on KBS technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31) and 1987 (TR 87-33) is available through SKB.

GWHRT - A FLOW MODEL FOR COUPLED GROUNDWATER AND HEAT FLOW

```
ROGER THUNVIK
Royal Institute of Technology
Stockholm, Sweden
```

CAROL BRAESTER
Israel Institute of technology Haifa, Israel

ABSTRACT

A mathematical model describing the hydrothermal conditions around a hard rock repository for disposal of nuclear fuel waste is presented. The model was developed to study the effect of heat released from a radioactive waste repository on the flow times from the repository to the ground surface. The model consists of a set of coupled non-linear partial differential equations for heat and ground water flow. In addition there are two equations of state relating fluid density and viscosity to pressure and temperature.

The system of equations is solved numerically using the finite element method in one, two or three dimensions. The model has been successively developed and used as a research tool to include unsaturated flow, gas migration, discrete elements, stochastic analysis, etc. The model version described here is the basic one. The fractured rock is treated either as two overlapping continua in which the one represents the network of fractures and the other the solid blocks or as a single equivalent medium. The first approach assumes quasi-steady state heat transfer from the rock to the fluid, allowing a linear heat transfer function to be used. The second approach assumes instantaneous equilibrium between the fluid and the rock.

TABLE OF CONTENTS

```
1 MATHEMATICAL FORMULATION OF THE FLOW MODEL
1.1 FLUID FLOW
1.1.1 Basic equations for the saturated-unsaturated fluid flow
1.1.2 Finite element formulation of the flow equations
1.1.3 Finite element formulation for axi-symmetric flow
1.1.4 Boundary conditions for the fluid flow equation
1.2 HEAT FLOW
1.2.1 Basic equations of the heat flow in saturated fluid flow
1.2.2 Numerical formulation of the equations for the heat flow
1.2.3 Boundary conditions for the heat flow equations
1.3 NUMERICAL PROCEDURE
1.3.1 Numerical procedure for the flow equations
1.4 COUPLED FLOW AND ROCK STRESS
1.4.1 Basic equations for the rock displacements
1.4.2 Coupled equations for unsaturated flow and rock stress
    1.4.2.1 Definitions
    1.4.2.2 Mass conservation equation for solid
    1.4.2.3 Mass conservation equation for unsaturated fluid flow
2 PROGRAM STRUCTURE
2.1 INTRODUCTION
2.2 PROGRAM ORGANIZATION
2.2.1 Main program and its subroutine calls
2.2.2 Master subroutine and its subroutine calls
2.3. LIST OF SUBROUTINES
2.3.1 Main programs
2.3.2 Master subroutines
2.3.3 Rhysical properties
2.3.4 Input/Output
    2.3.4.1 Parameter data
    2.3.4.2 Hycrostatic boundary
    2.3.4.3 Prescribed flux boundary
2.3.5 Element matrix generation
    2.3.5.1 Fluid flow
        2.3.5.2 Heat flow
        2.3.5.3 Basis functions
2.3.6 Equation solution
    2.3.6.1 Front solution
    2.3.6.2 Band solution
2.3.7 Heat transfer function
2.3.8 Mass and energy balance
2.3.9 Fluid velocities
2.3.9 Fluid velocities
2.3.10 Radioactive heat source
2.3.11 Rock Stress
2.3.12 Auxiliary
2.3.13 Miscellaneous
2.4 COMMON AREAS
2.5 DESCRIPTION OF VARIABLES APPEARING IN THE COMMON BLOCKS
```

```
3 INRUT DATA AND USE OF THE PROGRAM
3.1 MAIN PROGRAM PREPARATION
3.1.1 Nodal data arravs
3.1.2 Element data arrays
3.1.3 Matrix problem arrays
3.1 MAIN PROGRAM PREPARATION
3.1.1 Nodal data arrays
    3.1.1.1 Nodal Coordinates
    3.1.1.2 Pressure data arrays
    3.1.1.3 Fluid temperature data arrays
    3.1.1.4 Rock temperature data arrays
    3.1.1.5 Heat transfer function data arrays
    3.1.1.6 Distributed heat source array
    3.1.1.7 Rock displacements
    3.1.1.8 Gas migration data arrays
    3.1.2.1 Element data arrays
    3.1.2.2 Permeability data array
    3.1.2.3 Work storage
3.1.3 Matrix problem arravs
    3.1.3.1 Front solution arrays
    3.1.3.2 Band solution arrays
3.2 INPUT DATA PREPARATION
3.2.1 Compulsory input
3.2.2 User controlled input
    3.2.2.1 List of user controlled input subroutines
    3.2.2.2 Description of user controlled subroutines
3.3 DESCRIPTION OF AUXILIARY FILES
3.3.1 Description of Input/Output data sets
3.3.2 Description of intermediate data sets
3.3.3 Specification of data sets used by the frontal solvers
3.3.4 Examples of DCB specification
3.3.5 Block data and common
3.3.6 Restart
4
REFERENCES
```


NOMENCLATURE

Notation		Dimension	SI unit
a	equivalent block radius	L	m
c	compressibility	$M^{-1} L t^{2}$	$P a^{-1}$
C	specific heat capacity	$L^{2} t^{-2} K^{-1}$	$J /(k g k)$
D	thermal diffusivity	$L^{2} t^{-1}$	$m^{2 / s}$
9	acceleration of gravity	$L t^{-2}$	m / s^{2}
h	heat transfer coefficient	$M L^{-1} t^{-3} K^{-1}$	$W /\left(m^{3} k\right)$
$k_{i j}$	permeability tensor	L^{2}	$m m^{2}$
n_{i}	normal vector	-	-
P	pressure	$M L^{-1} t^{-2}$	Pct
9	specific discharge	$L t^{-1}$	m / s
q_{r}	specific flux normal to an exterior boundary	$L t^{-1}$	m / s
Q^{T}	total heat flux	$M L^{2} t^{-3}$	H_{1}
r	radial coordinate	L	m
S	water saturation	-	-
	dS	$M^{-1} L t^{2}$	PCl^{-1}
5^{\prime}	$\overline{d p}$		
1	time	t	s
T	temperature	K	k
U	fluid velocity	$L t^{-1}$	m / s
u	heat transfer function	$N L^{-1} t^{-3}$	$1.1 / m^{3}$
\because	z-coordinate	L	m
a_{1}, a_{2}	coefficients in interpolation formula for radioactive decay	-	-
β	coefficient of thermal volume expansion of the fluid	k^{-1}	$1 / K$

y	coefficient to determine exponential decrease in permeability with depth		-
δ	coefficient for the approximation of the heat transfer at the surface of a sphere or a slab	-	-
dt	time step	1	s
λ	thermal conductivity	$M L t^{-3} \mathrm{~K}^{-1}$	$W /(m k)$
θ	angle in cylindrical coordinate system	-	radians
μ	dynamic viscosity	$A t L^{-1} t^{-1}$	Pas
ρ	density	$M L^{-3}$	$\mathrm{kg} / \mathrm{m}^{3}$
ϕ	porosity	-	-
ψ	basis function		
$\langle a, b\rangle$	inner product		
	$\langle a, b\rangle \equiv \int_{R} a \cdot b d R$		
1 \}	column vector		
($]$	matrix		

Superscripts	
f	fluid
r	rock
0	reference value
$*$	equivalent medium
(n)	time level

Subscripts


```
Notation used for stress calculation
\(a_{i} \quad=\) acceleration component
\(e_{1 j} \quad=\) strain tensor
\(e \quad=e_{k k}\)
\(E \quad=\) Young's modulus \((E>0)\)
\(G \quad=\frac{E}{2(1+v)}\)
\(k \quad=\frac{E}{3(1-2 v)}\)
\(s \quad=\sigma_{k k}\)
\(T=\) temperature
\(x_{i} \quad=\) Cartesian coordinate
N: = body force vector
\(u_{i} \quad=\) displacement vector
\(\beta \quad=\) coefficient of thermal volume expansion
\(\alpha=\frac{E \beta}{1-2 v}\)
\(\delta_{i,} \quad=\) Kronecker delta
\(v \quad=\) Poissons's ratio ( \(-1<v<1 / 2\) )
\(\rho^{r} \quad=\) density of rock
\(\lambda \quad=\frac{E v}{(1+v)(1-2 v)}\)
\(\sigma_{i j} \quad=\) stress tensor
```

symbol	parameter	dimension
B	cavern width	L
b_{f}	fracture width	L
c_{1}	compressibility of the fluid	$M^{-1} L t^{2}$
c_{r}	compressibility of the rock matrix	$M^{-1} L t^{2}$
g	acceleration of gravity	$L t^{-2}$
k	permeability	L^{2}
l	fracture spacing	L
M	molecular weight of the gas	Mmole ${ }^{-1}$
n,	fracture frequency of fracture category i	-
p	pressure	$M L^{-1} t^{-2}$
$P_{\text {c }}$	capillary pressure	$M L^{-1} t^{-2}$
q_{n}	normal flux	$L t^{-1}$
Q	mass rate of gas production	$M L^{-3} t^{-1}$
R	gas constant	$M L^{2} t^{-2} T^{-1}$ mole ${ }^{-1}$
1	time	1
$S_{g r}$	residual gas saturation	-
$S_{101 r}$	irreducible water saturation	-
T	temperature	T
u	volumetric rate of flow per unit area	$L t^{-1}$
"	velocity	$L t^{-1}$
z	correction factor for real gases	-
Greek		
ρ	density	$1 / L^{-3}$
μ	dynamic viscosity	$M L^{-1} t^{-1}$

Subscripts
contact angle
degrees
porosity
potential
basis function
interface elevation above datum ($z=0$)
I.J. ${ }^{-}$
node number

1. MATHEMATICAL FORMULATION OE THE FLOW MODEL

1.1 FLUID FLOW

1.1.1 Basic equations for the saturated-unsaturated fluid flow

The present flow model considers the following equation of continuity for
the fluid

$$
\begin{equation*}
\left(\phi S \rho^{\prime}\right)_{1}+\left(\rho^{\prime} q_{1}\right)_{1}=0 \tag{1.1-1}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{1}=-\frac{k_{i j}}{\mu}\left(p_{.1}-\rho^{f} g_{1}\right) \tag{1.1-2}
\end{equation*}
$$

which is analogous to Darcy's law.
Expanding the time derivative in the continuity equation for the fluid, one obtains

$$
\begin{aligned}
& \left(\phi S \rho^{t}\right)_{.1}=\phi S\left(\frac{\partial \rho^{\prime}}{\partial p} p_{1}+\frac{\partial \rho^{\prime}}{\partial T} T_{. t}^{f}\right) \\
& +\phi \rho^{\prime} \frac{\partial S}{\partial p} p . t+S \rho^{\prime} \frac{\partial \phi}{\partial p} p_{.1}
\end{aligned}
$$

Fluid compressibility, rock compressibility and the coefficient of thermal volume expansion of the fluid are defined as

$$
\begin{align*}
& c^{\prime}=\frac{1}{\rho^{\prime}} \frac{\partial \rho^{\prime}}{\partial p} \tag{1.1-3a}\\
& c^{r}=\frac{1}{\phi} \frac{\partial \phi}{\partial \rho} \tag{1.1-3b}\\
& \beta=-\frac{1}{\rho^{\prime}} \frac{\partial \rho^{\prime}}{\partial T^{\prime}} \tag{1.1-3c}
\end{align*}
$$

Making use of the previous definitions, one obtains

$$
\begin{aligned}
& \left(\phi S \rho^{\prime}\right)_{1}=\phi S \rho^{\prime} c^{\prime} P .1-\phi S \rho^{\prime} \beta T_{.1}^{\prime} \\
& +\phi \rho^{\prime} S^{\prime} P .1+S \rho^{\prime} \phi c^{\prime} P:
\end{aligned}
$$

or

$$
\left(\phi S \rho^{\prime}\right)_{t}=\phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) P . t-\phi S \rho^{\prime} \beta T_{1}^{\prime}
$$

The equation for the fluid flow may now be written as

$$
\begin{align*}
& \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) P_{, t}-\phi S \rho^{\prime} \beta T_{t}^{\prime} \tag{1.1-4}\\
& -\left(\rho^{\prime} \frac{k_{i j}}{\mu}\left(p, j-\rho^{\prime} g_{1}\right)_{, 2}\right)_{, 1}=0
\end{align*}
$$

1.1.2 Finite element formulation of the flow equations

The flow equation is solved numerically, using the Galerkin finite element method. The flow domain is discretized by a mesh of line elements in one dimension, quadrilateral elements in two dimensions and hexahedral elements in three dimensions. The flow equation considered is:

$$
\begin{aligned}
& \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) p_{. t}-\phi S \rho^{\prime} \beta T_{. t}^{\prime} \\
& -\left(\rho^{\prime} \frac{k_{i j}}{\mu}\left(p_{. j}-\rho^{\prime} G_{j}\right)_{, i}\right)_{, i}=0
\end{aligned}
$$

The Galerkin formulation of the flow equation is

$$
\begin{align*}
& \left\langle\phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) p . t-\phi S \rho^{\prime} \beta T_{. t}^{\prime}, \quad \psi_{1}\right\rangle \tag{1.1-5}\\
& -\left\langle\left(\rho^{\prime} \frac{k_{1 j}}{\mu}\left(p,-\rho^{\prime} g_{1}\right)\right)_{. i}, \quad \psi_{1}\right\rangle=0
\end{align*}
$$

where $\psi_{\text {, }}$ represents the basis functions, chosen such that the essential boundary conditions will be satisfied.

Applying Green's theorem, we obtain

$$
\begin{align*}
& \left\langle\phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) p,-\phi S \rho^{\prime} \beta T_{11}^{\prime} \cdot \psi_{l}\right\rangle \tag{1.1-6}\\
& +\left\langle\left(\rho^{\prime} \frac{k_{11}}{\mu}\left(p_{11}-\rho^{\prime} g_{1}\right)\right), \psi_{1, i}\right) \\
& -\int_{\mathrm{s}} \rho^{\prime} \frac{k_{1}}{\mu}\left(p_{.1}-\rho^{\prime} g_{j}\right) \psi_{l} d S_{1}=0
\end{align*}
$$

Assume the trial functions to be of the form

$$
\begin{align*}
& p \approx p_{J} \psi_{J} \tag{1.1-7a}\\
& T \approx T_{J} \psi_{J} \tag{1.1-7b}
\end{align*}
$$

Substitution of the trial functions into the previous equation yields

$$
\begin{align*}
& \left\langle\phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) p_{j, t} \psi_{j}-\phi S \rho^{\prime} \beta T_{j, t}^{\prime} \psi_{J}, \psi_{l}\right) \tag{1.1-8}\\
& +\left\langle\left(\rho^{\prime} \frac{k_{i j}}{\mu}\left(p_{j} \psi_{j, i}-\rho^{\prime} g_{j}\right)\right), \psi_{1, i}\right)
\end{align*}
$$

$$
-\int_{S} \rho^{\prime \prime} \frac{k_{i j}}{\mu}\left(p_{j, 1} \psi_{J}-\rho^{\prime} g_{1}\right) \psi_{1} d S_{i}=0
$$

The previous equation may be written in matrix form as

$$
\begin{equation*}
A_{l j}^{11} P_{J, t}+A_{l J}^{12} T_{J, 1}^{\prime}+A_{I J}^{13} P_{J}-C_{l}^{1}=0 \tag{1.1-9}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{I J}^{11}=\iiint_{R} \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) \psi_{J} \psi_{I} d R \\
& A_{1 j}^{12}=\iiint_{R} \phi S \rho^{\prime} \beta \psi_{J} \psi_{I} d R \\
& A_{I J}^{13}=\iiint_{R} \rho^{f} \frac{k_{11}}{\mu} \psi_{J, i} \psi_{i, i} d R \\
& C_{i}^{\prime}=\iint_{S} q_{r} \psi_{l} d S+\iiint_{R} \rho^{\prime} \frac{k_{i 1}}{\mu} \rho^{\prime} g_{1} \psi_{1, i} d R \\
& I, J=1,2, \ldots N
\end{aligned}
$$

1.1.3 Einite element formulation for axi-symmetric flow

In cylindrical coordinates (x, θ, z) the inner product may be defined as

$$
\begin{equation*}
\langle\phi, \psi\rangle=\int_{a_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \int_{\theta_{1}}^{\theta_{2}} \phi \psi r d \theta d r d= \tag{1.1-10}
\end{equation*}
$$

When the flow is assumed to be axi-symmetric, it is convenient to first perform the integration over θ_{1} i.e. for $\theta_{1}=0$ and $\theta_{2}=2 \pi$

$$
\begin{equation*}
<\phi, \psi>=2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \phi \psi r d r d z \tag{1.1-11}
\end{equation*}
$$

On accoount of (1.1-11) equation (1.1-8) may be written as

$$
\begin{align*}
& 2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{-}\right) \rho . t \psi_{1} r d r d \because+ \\
& -2 \pi \int_{a_{1}}^{2_{2}} \int_{r_{1}}^{r_{2}} \phi S \rho^{\prime} \beta T_{i}^{t} \psi, r d r d i \\
& +2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \rho^{\prime} \frac{k_{11}}{\mu}\left(P_{1}-\rho^{\prime} g_{1}\right) \psi_{1,1} r d r d z \\
& -2 \pi \int_{z_{1}}^{z_{2}} \rho \frac{k_{i}}{\mu}\left(p_{, 1}-\rho^{\prime} g_{j}\right) \psi_{1} r n_{1} d z=0 \tag{1.1-12}
\end{align*}
$$

$$
\begin{align*}
& 2 \pi \iint \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) p_{j, i} \psi_{J} \psi_{l} r d r d z- \\
& -2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \phi S \rho^{\prime} \beta T_{J, t}^{\prime} \psi_{J} \psi_{l} r d r d z+ \\
& +2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \rho^{\prime} \frac{k_{i j}}{\mu}\left(p_{j} \psi_{J, l}-\rho^{\prime} g_{j}\right) \psi_{1, i} r d r d z- \\
& 2 \pi \int_{z_{1}}^{z_{2}} q_{r} \psi_{l} r d z=0 \tag{1.1-13}
\end{align*}
$$

$$
I, J=1,2, \ldots N
$$

where q, is the normal flux being prescribed along the exterior boundary, here assumed to be vertical, of the flow domain. The integration limits are the same as in the preceding equations and will therefore be omitted from now on.

Equation (1.1-13) may be written in a more compact form as

$$
\begin{equation*}
A_{1 j}^{11} P_{J .1}+A_{1 J}^{12} T_{J .1}^{\prime}+A_{1 J}^{13} P_{J}-C_{1}^{1}=0 \tag{1.1-14}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{l j}^{11}=2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \phi \rho^{\prime}\left(S\left(c^{\prime}+c^{r}\right)+S^{\prime}\right) \psi_{J} \psi_{l} r d r d z \\
& A_{l j}^{12}=2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \phi S \rho^{\prime} \beta \psi_{J} \psi_{l} r d r d z \\
& A_{l j}^{13}=2 \pi \int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \rho^{\prime} \frac{k_{i j}}{\mu} \psi_{j, j} \psi_{1, i} r d r d z \\
& C_{l}^{1}=2 \pi \int_{z_{1}}^{z_{2}} q_{r} \psi_{l} r d z+\int_{z_{1}}^{z_{2}} \int_{r_{1}}^{r_{2}} \rho^{\prime} \frac{k_{i j}}{\mu} \rho^{\prime} g, \psi_{l, i} r d r d z \\
& I_{r} J=1,2, \ldots N
\end{aligned}
$$

1.1.4 Boundary conditions for the fluid flow equation

The previous set of governing equations must be supplemented with the appropriate boundary and initial conditions for the problem. These are of the following types:
(i) Prescribed pressure at a fixed boundary.
(ii) Prescribed groundwater flux normal to a fixed boundary (e.g.zero groundwater flux due to impervious barriers).
(iii) Prescribed pressure at a moving boundary, whose position is to be determined as part of the solution.

The first type of boundary condition is relevant to the top boundary of the flow domain when the aquifer is to be considered unconfined. The top boundary may either be a fixed or a moving boundary. If it is a moving boundary then its position is usually unknown and therefore a part of the
solution. If the top of the aquifer is confined by an impervious layer then the second type of boundary condition should be considered with zero normal flux prescribed at the boundary.
The lateral extent of the flow domain should in general be considered infinite. This is also true of the bottom of the flow domain. However, the calculations must be limited to a finite part of the flow domain. In certain cases a finite part may be localized using symmetry reasoning by considering an infinite series of identical repositories. In general, imaginary boundaries must be imposed upon the flow domain and they must be chosen in such a way that their effects on the solution values become negligible.
The third type of boundary condition is treated by solving the flow problem as a saturated-unsaturated flow problem. This requires that characteristic curves for capillary pressure versus saturation and relative permeability versus saturation be known.

1.2 HEAT FLOW

1.2.1 Basic equations of the heat flow in saturated fluid flow

The equation of the conservation of thermal energy for the fluid is written as

$$
\begin{equation*}
\left(\phi \rho^{\prime} C^{\prime} T^{\prime}\right)_{, 1}-\left(\phi \lambda^{\prime} T_{i}^{\prime}\right)_{i}+\left(\rho^{\prime} C^{\prime} q_{1} T^{\prime}\right)_{i}+w^{\prime}=0 \tag{1.2-1}
\end{equation*}
$$

and the equation of the conservation of thermal energy for the rock is written as

$$
\begin{equation*}
\left((1-\phi) \rho^{r} C^{r} T^{r}\right)_{, 1}-\left((1-\phi) \lambda^{r} T_{.1}^{r}\right)_{. i}+w^{r}=0 \tag{1.2-2}
\end{equation*}
$$

where w^{\prime} and w^{\prime} represent heat sources and also the exchange of heat between the fluid and rock media.
Expanding the time derivative and the convective terms and substituting the equation of the conservation of mass for the fluid (Eq. 1.1-1 with $S=1$) into the equation of the thermal energy balance of the fluid, balance of the fluid, one obtains

$$
\begin{equation*}
\phi \rho^{\prime} C^{\prime} T_{: 1}^{\prime}-\left(\phi \lambda^{\prime} T_{. i}^{\prime}\right)_{1}+\rho^{\prime} C^{\prime} q_{1} T_{.1}^{t}+w^{\prime}=0 \tag{1.2-3}
\end{equation*}
$$

Similarly and by making use of the definition of rock compressibility, the equation of the thermal balance for the rock may be written as

$$
\begin{gather*}
(1-\phi) \rho^{r} C^{r} T_{.1}^{r}-\phi \rho^{r} C^{r} T^{r} C^{r} p . \tag{1.2-4}\\
-(1-\phi) \lambda^{r} T_{.2}^{r}+u^{r}=0
\end{gather*}
$$

The heat flow equations are supplemented by the equations state, relating the fluid density and viscosity to pressure and temperature.

$$
\begin{align*}
\rho^{\prime} & =\rho^{\prime}\left(P, T^{\prime}\right) \tag{1.2-5}\\
\mu & =\mu\left(P, T^{\prime}\right) \tag{1.2-6}
\end{align*}
$$

In the present computer model it is assumed that viscosity is a function of temperature only.
Currently, quasi-steady heat exchange is considered. This means that the heat transfer function in equations (1.2-3) and (1.2-4) may be replaced by a linear heat transfer function of the following form

$$
\begin{equation*}
w=h\left(T^{t}-T^{r}\right) \tag{1.2-7}
\end{equation*}
$$

where h is the heat transfer coefficient, being a function of the characteristic block size, themal diffusivity of the rock, etc. (see Thunvik and Braester, 1980). Substituting the previous relationship into the equations for the heat flow, we obtain

$$
\begin{align*}
& \phi \rho^{t} C^{t} T_{i,}^{\prime}-\left(\phi \lambda^{\prime} T_{.1}^{\prime}\right)_{, i}+\rho^{f} C^{\prime} \mathrm{q}_{i} T_{.1}^{\prime}+h\left(T^{\prime}-T^{r}\right)=0 \\
& (1-\phi) \rho^{r} C^{r} T_{.1}^{r}-\phi \rho^{r} C^{r} T^{r} C^{r} P_{. i} \\
& -\left(\left(1-\phi \lambda^{r}\right) T_{. i}^{r}\right)_{, i}-h\left(T^{\prime}-T^{r}\right)=0 \tag{1.2-9}
\end{align*}
$$

If it may be assumed that the fluid and rock media will attain thermal equilibrium instantaneously, then the two heat balance equations may be added to each other, and the heat flow may be described by the following equation

$$
\begin{equation*}
\left.(\rho C)^{*} T_{, 1}-\lambda^{*} T_{, 1}\right)_{1}+\rho^{\prime} C^{\prime} q_{1} T_{, 1}^{\prime}=0 \tag{1.2-10}
\end{equation*}
$$

where

$$
\begin{align*}
& (\rho C)^{*}=\phi \rho^{\prime} C^{t}+(1-\phi) \rho^{r} C^{r} \tag{1.2-11}\\
& \lambda^{*}=\phi \lambda^{t}+(1-\phi) \lambda^{r} \tag{1.2-12}
\end{align*}
$$

1.2.2 Numerical formulation of the equations for the heat flow

Applying Galerkin's method to the heat flow equations, we obtain the fluid and rock temperature equations

$$
\begin{aligned}
& \left\langle\phi \rho^{\prime} C^{\prime} T_{.1}^{\prime}, \quad \psi_{l}\right\rangle-\left\langle\left(\left.\phi \lambda^{\prime} T_{, i}^{\prime}\right|_{, i} \quad, \quad \psi_{I}\right\rangle+\right. \\
& \left\{\rho^{\prime} C^{\prime} q_{1} T_{1}^{\prime}, \quad \psi_{1}\right\}+\left\langle u \quad, \psi_{1}^{\prime}=0\right. \\
& (1-\phi) \rho^{r} C^{r} T_{.1}^{r}, \psi_{1}-\rho^{r} C^{r} T^{r} \phi C^{r} P_{1}, \psi_{1}- \\
& \left.\left\langle(1-\phi) \lambda^{r} T_{, i}^{r}\right\rangle_{i,}, \psi_{i}\right\rangle-\left(\omega, \quad \psi_{i}\right)=0 \\
& \text { Applying Green's theorem to all second derivative terms, we obtain }
\end{aligned}
$$

$$
\begin{align*}
& \left\langle\phi \rho^{\prime} C^{\prime} T_{.1}^{\prime}, \quad \psi_{1}\right\rangle+\left\langle\phi \lambda^{\prime} T_{. i}^{\prime}, \quad \psi_{1, i}\right\rangle \tag{1.2-15}\\
& +\left\langle\rho^{\prime} C^{\prime} q_{i} T_{i}^{\prime}, \psi_{1}\right\rangle+\left(w, \psi_{1}\right) \\
& -\int_{S} \phi \lambda^{\prime} T_{i,}^{\prime} \psi_{1} d S_{1}=0 \\
& \left((1-\phi) \rho^{r} T_{. t}^{r}, \quad \psi_{1}\right\rangle-\left\langle\rho^{r} C^{r} T^{r} c^{r} P_{.1}, \psi_{1}\right) \tag{1.2-16}\\
& +\left((1-\phi) \lambda^{r} T_{. i}^{r}, \quad \psi_{1.2}\right)-\left\langle\omega, \psi_{i}\right\rangle \\
& -\int_{S}(1-\phi) \lambda^{r} T_{.,}^{r} \psi_{I} d S_{i}=0
\end{align*}
$$

Substitution of the trial functions yields

$$
\begin{align*}
& \left\langle\phi \rho^{f} C^{\prime} T_{J, i}^{\prime} \psi_{J}, \psi_{I}\right\rangle+\left\langle\phi \lambda^{\prime} T_{J}^{\prime} \psi_{J, i}, \psi_{t, i}\right\rangle \tag{1.2-17}\\
& +\left(\rho^{\prime} C^{\prime} g_{1} T^{\prime} \psi_{j .1}, \psi_{1}\right)+\left\langle u \quad \psi_{1}\right\rangle \\
& -\int_{S} \phi \lambda^{\prime} T_{.1}^{\prime} \psi_{l} d S_{2}=0 \\
& \left((1-\phi) \rho^{r} T_{j, 1}^{r} \psi_{J}, \quad \psi_{l}\right)-\left\langle\rho^{r} C^{r} T_{j}^{r} \phi_{j} c^{r} P_{. l}, \psi_{l}\right) \tag{1.2-18}\\
& +\left((1-\phi) \lambda^{r} \psi, T_{j, i}^{r}, \quad \psi_{1, i}\right)-\left\langle w . \psi_{i}\right\rangle \\
& -\int_{S}(1-\phi) \lambda^{r} T_{i,}^{r} \psi_{1} d S_{1}=0
\end{align*}
$$

The equations for the heat flow are written in matrix form as

$$
\begin{align*}
& A_{l j}^{12} T_{J, 1}^{\prime}+A_{l j}^{22} T_{j}^{f}+C_{l}^{2}=0 \tag{1.2-19}\\
& A_{l j}^{31} T_{J, 1}^{r}+A_{l j}^{33} T_{j}^{r}+C_{l}^{3}=0 \tag{1.2-20}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{l j}^{12}=\left\langle\phi \rho^{\prime} C^{\prime} \psi_{J}, \psi_{l}\right\rangle \\
& A_{l j}^{22}=\left\langle\phi \lambda^{\prime} \psi_{J .1}, \psi_{l, i}+\rho^{\prime} C^{\prime} q_{i} \psi_{J, i}, \psi_{l}\right. \\
& A_{l j}^{23}=0 \\
& \left.C_{l}^{2}=-\int_{S} \phi \lambda^{\prime} T_{, i}^{\prime} \psi_{1} d S_{i}+w_{1}, \psi_{i}\right\rangle \\
& A_{l j}^{33}=\left\langle(1-\phi) \psi_{J}, \psi_{i}\right\rangle \\
& A_{l J}^{32}=0
\end{aligned}
$$

$$
\begin{aligned}
& A_{1 J}^{33}=\left\langle(1-\phi) \lambda^{r} \psi_{J, i}, \psi_{1, i}\right\rangle-\left\langle\rho^{r} C^{r} c^{r} P_{, i} \psi_{J}, \psi_{1}\right\rangle \\
& C_{1}^{3}=-\int_{S}(1-\phi) \lambda^{r} T_{. i}^{r} \psi_{1} d S_{i}+\left\langle w, \psi_{1}\right\rangle
\end{aligned}
$$

If quasi-linear heat exchange between the fluid and rock media is assumed, then the previous matrix system may be written as

$$
\begin{align*}
& A_{l J}^{12} T_{J, 1}^{\prime}+A_{l J}^{22} T_{J}^{\prime}+A_{l J}^{23} T_{J}^{r}+C_{l}^{2}=0 \tag{1,2-21}\\
& A_{l J}^{31} T_{j, 1}^{\prime}+A_{l J}^{32} T_{J}^{\prime}+A_{l J}^{33} T_{J}^{r}+C_{l}^{3}=0 \tag{1.2-22}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{1 j}^{12}=\left\langle\phi \rho^{\prime} C^{\prime} \psi_{j}, \psi_{l}\right\rangle \\
& A_{l j}^{22}=\left\langle\phi \lambda^{\prime} \psi_{j, i}, \quad \psi_{i, i}\right\rangle+\left\langle\rho^{\prime} C^{\prime} q_{1} \psi_{. i}, \quad \psi_{i}\right\rangle+\left\langle h \psi_{J}, \quad \psi_{i}\right\rangle \\
& \left.A_{l j}^{23}=+h \psi_{j} \quad, \quad \psi_{i}\right\rangle \\
& C_{l}^{2}=-\int_{S} \phi \lambda^{\prime} T_{.1}^{\prime} \psi_{l} d S_{1} \\
& A_{l j}^{31}=\left((1-\phi) \psi, \quad \psi_{i}\right. \\
& A_{1 J}^{32}=\left(h \psi_{j} \quad, \quad \psi_{l}\right) \\
& A_{1 j}^{33}=\left((1-\phi) \lambda^{r} \psi_{j, 1}, \quad \psi_{i, 1}\right) \\
& \left.-\left(\rho^{r} C^{r} c^{r} \rho_{1} \psi_{j}, \quad \psi_{i}\right)+h \psi_{j} \quad, \quad \psi_{i}\right) \\
& C_{1}^{3}=-\int_{S}(1-\phi) \lambda^{r} T_{.1}^{r} \psi_{1} d S_{1}
\end{aligned}
$$

1.2.3 Boundary conditions for the heat flow equations

The previous set of governing equations must be supplemented with the appropriate boundary and initial conditions for the problem. These are of the following types:
(i) Prescribed temperature at a boundary.
(ii) Prescribed temperature at a boundary.
(iii) Prescribed heat flux normal to a boundary (e.g. zero heat flux).

The first type is considered for the top and the bottom boundaries of the flow domain. The prescribed temperature at the top boundary corresponds to the temperature at the ground surface or at the water table if this is below the ground surface. As for the fluid flow equation, a boundary condition corresponding to an imaginary bottom of the flow domain must be imposed. The temperature at the bottom boundary will, together with the prescribed temperature at the top boundary, specify the natural geothermal gradient. In a similar way as for the fluid flow equation the considered flow domain is confined laterally by the introduction of imaainary vertical boundaries.

1.3 NUMERICAI PROCEDURE FOR FLUID AND HEAT FLOW

1.3.1 Numerical procedure for the flow equations

The flow equations are witten in matrix form as

$$
\begin{align*}
& A_{1 j}^{11} P_{J, 1}+A_{1 j}^{12} T_{J, 1}^{\prime}+A_{1 j}^{13} P_{J}+C_{1}^{1}=0 \tag{1.3-1}\\
& A_{1 j}^{12} T_{J, 1}^{\prime}+A_{1 j}^{22} T_{J}^{\prime}+C_{l}^{2}=0 \tag{1.3-2}\\
& A_{1 j}^{3} T_{J, 1}^{r}+A_{1 j}^{33} T_{J}^{r}+C_{l}^{3}=0 \tag{1.3-3}
\end{align*}
$$

If a linear heat transfer function is considered, then the previous matrix system may be written as

$$
\begin{align*}
& A_{l j}^{11} P_{J, 1}+A_{l j}^{12} T_{J, 1}^{\prime}+A_{I J}^{13} P_{J}+C_{l}^{1}=0 \tag{1.3-4}\\
& A_{I J}^{12} T_{J, 1}^{\prime}+A_{l j}^{22} T_{J}^{J}+A_{l J}^{23} T_{J}^{r}+C_{l}^{2}=0 \tag{1.3-5}\\
& A_{l J}^{31} T_{J, 1}^{r}+A_{l J}^{32} T_{J}^{J}+A_{l J}^{33} T_{J}^{r}+C_{l}^{3}=0 \tag{1.3-6}
\end{align*}
$$

The system of matrix equations is non-linear. The non-linearities are treated by applying an iterative procedure in solving the matrix equations.
In the numerical scheme the fluid flow equation is solved separately. Thereafter the two heat flow equations are solved simultaneously. When the linear heat transfer function is applied, the fluid and rock temperatures are solved for implicitly in the two heat flow equations.
The present numerical scheme is based on direct iteration using weighted averages when solving for fluid flow coupled with heat flow, and Newton-Raphson iteration when solving for unsaturated flow. A brief statement of the application of the Newton-Raphson technique in the model is presented in the sequel.
Using the finite difference approach to approximate the time derivatives in the previous equations, we obtain

$$
\begin{aligned}
& \frac{1}{J} \cdot A_{l J}^{1!}\left(p_{J}^{(n+1)}-p_{J}^{(n)}\right)+\frac{1}{J} A_{I}^{12}\left(T_{J}^{(n+1)}-T_{J}^{(n)}\right. \\
& +A_{1 J}^{13} P_{J}^{(n+1)}+C_{l}^{1}=0
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{d t} A_{l J}^{21}\left(T^{f(n+1)}-T_{j}^{f(n)}\right)+A_{l J}^{22} T_{j}^{f(n+1)} \tag{1.3-8}\\
& +A_{l J}^{23} T_{J}^{r(n+1)}+C_{l}^{2}=0 \\
& \frac{1}{d t} A_{l j}^{31}\left(T_{J}^{r(n+1)}-T_{J}^{r(n)}\right)+A_{l J}^{32} T_{J}^{f(n+1)} \tag{1.3-9}\\
& +A_{l J}^{33} T_{J}^{r(n+1)}+A_{l j}^{34}\left(P_{J}^{(n+1)}-P_{j}^{(n)}\right)+C_{l}^{3}=0
\end{align*}
$$

where the figures enclosed by parentheses denote the time level. Rearranging, we obtain

$$
\begin{align*}
& \left(\frac{1}{J} A_{l J}^{11}+A_{l J}^{13}\right) p_{J}^{(n+1)}=\frac{1}{J t} A_{I J}^{11} p_{j}^{(n)} \\
& -\frac{1}{d t} A_{l J}^{12}\left(T_{J}^{f(n+1)}-T_{J}^{f(n)}\right)-C_{l}^{1} \\
& \left(\frac{1}{J t} A_{l j}^{21}+A_{l J}^{22}\right)+T_{J}^{f(n+1)}+A_{l J}^{23} T_{J}^{r(n+1)} \\
& =\frac{1}{d t} \cdot 4_{l j}^{21} T_{J}^{f(n)}-C_{l}^{2} \\
& \left(\frac{1}{J t} A_{l J}^{31}+A_{l j}^{32}\right)+T_{J}^{f(n+1)}+A_{l J}^{33} T_{j}^{r(n+1)} \\
& =\frac{1}{\Delta t} \cdot A_{I J}^{3!} T_{J}^{r(n)}-\frac{1}{\Delta t} A_{I J}^{34}\left(P_{J}^{(n+1)}-P_{J}^{(n)}\right)-C_{I}^{3} \\
& \text { or } \\
& {\left[A_{11}\right]\{p\}=\left\{C_{1}\right\}} \\
& {\left[A_{22}\right]\left\{T^{f}\right\}+\left[B_{23}\right]\left\{T^{r}\right\}=\left\{C_{2}\right\}} \\
& \text { (1.3-14) } \\
& {\left[A_{32}\right]\left\{T^{f}\right\}+\left[B_{33}\right]\left\{T^{r}\right\}=\left\{C_{3}\right\}} \tag{1.3-15}
\end{align*}
$$

Newton-Raphson iteration

The finite element formulation of the present flow equations leads to matrix problems of the following form

$$
\begin{equation*}
A_{I J} P_{J}-B_{I}=R_{I}=0 \tag{1.3-16}
\end{equation*}
$$

Expanding the residual vector R, in Taylor series, one obtains

$$
\begin{equation*}
R_{l}\left(p_{j}\right)=R_{l}\left(p_{j}^{(0)}\right)+\frac{\partial R_{l}\left(p_{j}^{(0)}\right)}{\partial p_{j}} \Delta_{j}+\text { higher order terms } \tag{1,3-17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta p_{J}=p_{J}-p_{j}^{(0)} \tag{1.3-18}
\end{equation*}
$$

Neglecting the higher order terms in (1.3-17) one may write

$$
\begin{equation*}
\frac{\partial R_{l}\left(p_{J}^{(0)}\right)}{\partial p_{J}} \perp p_{J}=-R_{l}\left(p_{j}^{(0)}\right) \tag{1.3-19}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.J_{I J}\right\lrcorner P_{J}=-R_{I}\left(P_{J}^{(0)}\right) \tag{1.3-20}
\end{equation*}
$$

On account of (1.3-16) one may write (1.3-19) as

$$
\begin{equation*}
\left.4_{i J}\right\lrcorner_{P_{J}}=-R_{i}\left(p_{J}^{(0)}\right) \tag{1.3-21}
\end{equation*}
$$

or
$A_{l J} \perp p_{j}^{(n+1)}=-R_{l}\left(p_{j}^{(n)}\right)$
which is solved successively until the stipulated criterion for convergence has been reached.

1.4 COUPLED FLOW AND ROCK STRESS

A preliminary set of equations for solving coupled fluid and rock stress is presented.

1.4.1 Basic equations for the rock displacements

For an isotropic rock mass the stress tensor may be defined as

$$
\begin{equation*}
\sigma_{i j}=\lambda e_{k k} \delta_{i j}+2 G e_{i j}-\alpha \mid T-T_{0} \delta_{i,}-p \delta_{i j} \tag{1.4-1}
\end{equation*}
$$

where λ and G are the Lame constants and $\alpha=E \beta /(1-2 v)$, E is Young's modulus, v is Eoisson's ratio, β is the coefficient of themal expansion, σ_{11} is the total stress for an element consisting of a solid matrix and water. The first two terms terms in the right hand side of eq.(1.4-1), called the 'effective stress', determine the deformation of the solid matrix.

The equation of equilibrium is

$$
\begin{equation*}
\rho a_{i}=\frac{\partial \sigma_{i j}}{\partial x_{i}}+X_{i} \tag{1.4-2}
\end{equation*}
$$

where $a_{\text {}}$ are the acceleration components andl, are the body force components per unit volume.
Substituting the definition of the stress tensor (1.4-1) into the equations of equilibrium, we obtain

$$
\begin{equation*}
\left.\left(\lambda e_{k k} \delta_{i j}\right)_{, j}+2 G e_{i j, 1}-\left(\alpha \mid T-T_{0}\right) \delta_{i j}\right)_{, j}-\left(p \delta_{i j}\right)_{, 1}=0 \tag{1,4-3}
\end{equation*}
$$

Expanding the first term on the left hand side of equation (1.4-3), we obtain

$$
\begin{align*}
& \left(\lambda e_{k k} \delta_{i j}\right)_{, j}=\lambda \delta_{i j} e_{k k, j}=\lambda e_{k k, 1}=\lambda e_{1,1} \tag{1.4-4}\\
& \left(\lambda e_{k k} \delta_{1 j}\right)_{, 1}=\lambda \frac{1}{2}\left(u_{1, n}+u_{1, n}\right)=\lambda u_{1,1}
\end{align*}
$$

Expanding the second term on the left hand side of equation (1.4-3), we obtain

$$
\begin{align*}
& 2 G e_{i, 1}=2 G\left(\frac{1}{2}\left(u_{i, 1}+u_{, .1}\right)\right)_{, 1} \tag{1.4-6}\\
& =2 G\left(\frac{1}{2}\left(u_{i, 1}+u_{,, 1}\right)\right)=G u_{i, 1}+G u_{i, 1}
\end{align*}
$$

$$
\begin{align*}
& \left(\alpha\left(T-T_{0}\right)_{i j}\right)_{. j}=\alpha \delta_{i j}\left(T-T_{0}\right)_{j,} \tag{1.4-7}\\
& =\delta_{i j} \alpha\left(T-T_{0}\right)_{. j}=\alpha\left(T-T_{0}\right)_{1,}
\end{align*}
$$

and the fourth term becomes

$$
\begin{equation*}
\left(P \delta_{i j}\right)_{, j}=\delta_{i j} P_{. j}=P_{.1} \tag{1.4-8}
\end{equation*}
$$

Assuming quasi-steady conditions then equation (1.4-3) becomes

$$
\begin{equation*}
G u_{i, j}+(\lambda+G) u_{j, j}-\alpha\left(T-T_{0}\right)_{i i}-P_{. i}=0 \tag{1.4-9}
\end{equation*}
$$

1.4.2 Coupled equations for unsaturated flow and rock stress

1.4.2.1 Definitions

Rock density is assumed to be a function of temperature

$$
\rho^{r}=\rho^{r}(T)
$$

Fluid compressibility is defined as

$$
c^{\prime}=\frac{1}{\rho^{\prime}} \frac{d \rho^{\prime}}{d p}
$$

Thermal volume expansion coefficient for the fluid is defined as

$$
\beta^{\prime}=\frac{1}{\rho^{\prime}} \frac{\partial \rho^{\prime}}{\partial T^{\prime}}
$$

Thermal volume expansion coefficient for the rock is defined as

$$
\beta^{r}=\frac{1}{\rho^{r}} \frac{\partial \rho^{r}}{\partial T^{r}}
$$

Furthermore

$$
u_{i}^{r}=\text { rock displacement }
$$

$$
v_{i}^{r}=u_{i, t}^{r}
$$

$$
v_{i, i}^{r}=\left(u_{i, 1}^{r}\right)_{, i}=\left(u_{i, t}^{r}\right)=e_{, t}
$$

Darcy's law is:

$$
\begin{equation*}
q_{1}=S \phi\left(u_{1}^{\prime}-v_{1}^{r}\right)=-\frac{k_{1}}{\mu}\left(p_{1}-\rho^{\prime} g_{1}\right) \tag{1.4-10}
\end{equation*}
$$

1.4.2.2 Mass conservation equation for solid:

$$
\begin{equation*}
\left[(1-\phi) \rho^{r}\right]_{. t}+\left[(1-\phi) \rho^{r} v_{i}^{r}\right]_{, i}=0 \tag{1.4-11}
\end{equation*}
$$

Expansion of the derivatives yields

$$
\begin{equation*}
(1-\phi) \rho_{.1}^{r}-\rho^{r} \phi_{1,}-\rho^{r} v_{i}^{r} \phi_{.1}+(1-\phi)\left(\rho^{r} v_{1}^{r}\right)=0 \tag{1.4-12}
\end{equation*}
$$

Rearranging and dividing the previous equation by ρ, we obtain

$$
\begin{equation*}
\phi_{.1}+v_{i}^{r} \phi_{. t}=\frac{1}{\rho^{r}}(1-\phi) \rho_{.1}^{r}+\frac{(1-\phi)}{\rho^{r}}\left(\rho^{r} v_{i}^{r}\right)_{, i} \tag{1.4-13}
\end{equation*}
$$

Making use of the definition of the coefficient for thermal expansion of the rock, we obtain

$$
\begin{equation*}
\phi_{, i}+v_{i}^{r} \phi_{, i}=(1-\phi) \beta^{r} T_{. i}+(1-\phi) v_{i, i}+\frac{1-\phi}{\rho^{r}} v_{i}^{r} \rho_{. i}^{r} \tag{1.4-14}
\end{equation*}
$$

Assuming (i) that u_{1} is small compared with $u_{1,1}$ and (ii) that the space derivative ρ is small compared with the time derivative ρ_{i} we obtain the following approximate equation.

$$
\begin{equation*}
\frac{d \phi}{d t} \approx(1-\phi) e_{, 1}+(1-\phi) \beta^{r} \frac{d T}{d t} \tag{1.4-15}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \phi \approx(1-\phi) e+(1-\phi) \beta^{r} d T \tag{1.4-16}
\end{equation*}
$$

relating changes in porosity to changes in temperature
1.4.2.3 Mass conservation equation for unsaturated fluid flow

$$
\begin{equation*}
\left(S \phi \rho^{\prime}\right)_{.1}+\left(S \phi \rho^{f} v_{1}^{\prime}\right)_{. i}=0 \tag{1.4-17}
\end{equation*}
$$

$\phi \rho^{\prime} S_{. t}+S \phi \rho_{.1}^{\prime}+S \rho^{\prime} \phi ._{t}+v_{i}^{\prime} S \phi \rho_{. t}^{\prime}$
$+\rho^{\prime} S v_{i}^{\prime} \phi{ }_{1,}+\rho^{\prime} S \phi v_{1,1}^{\prime}+\rho^{\prime} \phi v_{1}^{\prime} S_{, 1}=0$
from (1.4-10)

$$
\begin{align*}
& \left.q_{1, i}=\left(v_{i}^{\prime}-v_{i}^{r}\right) S \phi_{1,}+v_{i}^{\prime}-v_{i}^{r}\right) \phi S S_{1}+S \phi\left(v_{i, 1}^{\prime}-v_{i, i}^{r}\right) \tag{1.4-19}\\
& \rho^{\prime} S v_{i}^{\prime} \phi_{i, 1}+\rho^{\prime} S \phi v_{i, i}^{\prime}=\rho^{\prime} q_{i, 1} \rho^{\prime} S v_{i}^{r} \phi \tag{1.4-20}\\
& +\rho^{\prime} S \phi v_{i, i}^{r}-\rho^{\prime} \phi\left(v_{i}^{\prime}-v_{i}^{r}\right) S_{, i}
\end{align*}
$$

Substitution of (1.4-20) and (1.4-13) into (1.4-18) yields
$\phi \rho^{f} S_{. t}+S \phi \rho_{{ }_{1}}^{f}+v_{i}^{f} S \phi \rho_{t}^{f}$
$+\rho^{f} S \phi v_{i, i}^{r}+\rho^{\prime} \phi v_{i}^{r} S_{1 .}+\rho^{\prime} q_{1, i}+$
$\frac{S \rho^{\prime}}{\rho^{r}}(1-\phi) \rho_{1}^{r}+\frac{S \rho^{\prime}(1-\phi)}{\rho^{r}} \rho^{\prime} i_{i, 1}^{\prime}+\frac{S \rho^{\prime}(1-\phi)}{\rho^{\prime}} i_{i}^{\prime} \rho_{i}^{\prime}=0$
Making use of the definitions presented above, we obtain
$\phi \rho^{\prime} S^{\prime} P ._{1}+S \phi \rho^{\prime} C^{\prime} P_{.1}+S \phi \beta^{\prime} \rho^{\prime} T_{.2}^{\prime}+S \phi v_{1}^{\prime} \rho_{.1}^{\prime}+\rho^{\prime} \phi v_{i}^{\prime} S_{.1}+\rho^{\prime} q_{1.1}$
$S \rho^{\prime} v_{i, 1}^{r}+\frac{S \rho^{\prime}}{\rho^{r}}(1-\phi) \rho^{r} \beta^{r} T_{1,}^{r}+S(1-\phi) \frac{\rho^{\prime}}{\rho^{r}} u_{i}^{r} \rho_{. i}^{r}=0$
or

$$
\begin{align*}
& S \phi \rho^{\prime} \beta^{\prime} T_{.1}^{f}+S \rho^{\prime}(1-\phi) \beta^{r} T_{. t}^{r}+\phi \rho^{\prime}\left(S^{r}+S c^{\prime}\right) p_{, i}+S \rho^{\prime} v_{i, i}^{r} \\
& +\left(\rho^{\prime} q_{i}\right)_{i,}+\phi v_{i}^{r}\left(\rho^{\prime} S\right)_{, i}+S(1-\phi) \frac{\rho^{\prime}}{\rho^{r}} v_{i}^{r} \rho_{i i}^{r}=0 \tag{1.4-23}
\end{align*}
$$

or

$$
\begin{align*}
& S \phi \rho^{\prime} \beta^{\prime} T_{. t}^{\prime}+S(1-\phi) \rho^{\prime} \beta^{r} T_{. t}^{r}+\phi \rho^{\prime}\left(S^{\prime}+S c^{\prime}\right) P_{, 1}+S \rho^{\prime} e_{. t} \\
& \left(\rho^{\prime} q_{1}\right)_{i,}+\phi u_{i .1}^{r}\left(\rho^{\prime} S\right)_{, i}+S(1-\phi) \frac{\rho^{\prime}}{\rho^{r}} u_{i}^{r} \rho_{.1}^{r}=0 \tag{1.4-24}
\end{align*}
$$

where

$$
\begin{equation*}
q_{i}=-\frac{k_{i j}}{\mu}\left(\rho_{, j}-\rho^{\prime} g_{j}\right) \tag{1.4-25}
\end{equation*}
$$

-16-

2 PROGRAM STRUCTURE
2.1 INTRODUCTION
2.2 MAIN PROGRAM AND ITS SUBROUTINE CALLS
2.3 MASTER SUBROUTINE AND ITS SUBROUTINE CALLS
2.4 COMMON BLOCKS
2.5 DESCRIPTION OF VARIABLES IN COMMON BLOCKS

2.1 INTRODUCTION

The program consists of a main program and a set of subroutines. The main program (HFMAIN) is used to specify the dimensions of most of the arrays whose sizes are problem dependent.

There are basically four parameters values that need to be specified in the main program. These are: MXNPX for the maximum permitted number of nodal points, MXNEX for the maximum permitted number of elements, MXNDE for the maximum permitted number of nodes per element and MXFROX for the maximum permitted size of the front-width. The values of these parameters are specified using PARAMETER statements. A more detailed description of the variables in the main program as well as the input data will be given in Chapter 3.

The program structure and its subroutine interrelations are shown in the next paragraph.

The principal subroutine, containing the overall structure of the model, is subroutine GFSBXI. The main features of this subroutine and its interrelations with other subroutines are illustrated in the sequel.

2.2 PROGRAM ORGANIZATION

2.2.1 Main proqram

Main Subroutines

HFMAIN-|---JBAUX1-|---JOBNAM Get current job identification
1 |---XDATE1 Get current date from system
$1 \quad 1--$ XCLOCK Get current time from system

1---JBAUX3
|---ZERO Disable underflow messages
Transfer of external subroutine names
1---HFEXRF-|---HFSBX2
|---HFSBX3
|---HFINS2
|---HFINS4
|---SETSTP Time step control
1---SETSTI Time step control
|---SETST2 Time step control
|---SETST3 Time step control
|---SETST4 Time step control
|---HFL2D2
|---HFL2DB
|---GFL2D2
|---HFELT5 Selection of integration routine for heat flow
Master subroutine
|---GFSBXI-|---XTIMEO Initialize time taking
\mid Input and initialization
|---HFINSI---|---LBPHX
1 |---HFINPT---|---TEXINU
|
1 Groundwater flow equations
|---GFPHS2--|---GFNPG1---|---FNDNF1
|---FNVSF1
|---IBPHX Test printout
|---PORSLV---|--LBPHX
|--PRSLVF
| Element integration
|--hFELFX
Fracture flow
|---FRCSLV
| Two-phase flow
1---TPHSLV
1
|---PHRES1 Newton-Raphson
|---HFWRKP-->-|Update work arrays
|---HFWAV1 | weighted average
|---HFWAV2 | calculation
1---PHSRC1
|---PHSRC2
|---HFSAVD Store initial data on
disk file
|---DLSCHK Gas migration displacement check
|---HFWRK1 Update nodal arrays
|---DRAINF
---DRAINX
|---DRAING
1 |

-19-

```
    | Heat flow equations
    |---HFTMS1---|---HFELT1 Heat flow integration
    |
    | Solution of equations for rock stress
    |---HFSTS1---।
    | Element integration
    |---HFLGN4
    |---SOLVUT--- |---UTSLV3
            |---UTSLV4
    |---HFITER Iteration control
    |---PHMXC1 Pressure change control
    |---HFWRK2 Update work arrays
    1---HFOUT3 Printout solution data
    |---HFLXNU Calculation of nodal velocities
    |---SOLVUT Printout solution data
    |---GFPRT1 Gas migration printout
    |---SFRUT1 Two-phase flow printout
    1---GFNPG3 Gas density abd viscosity
    1---GMBLA1 Gas migration mass balance
    |---HFSAVD--- |---HFNDU2
    |---GELIN2 Generation of mesh for gas migration
    |---GFPRT1 Printout gas migration results
    |---UNSPRT Printout unsatureted data
    \perp Printout solution data
    1---SOIVU2----1
    | 1---UTSLV3
    1---NDPRU2
    | ---NDPRU3
    1---NDPRT2
    1---HFWQUA Evaluate heat transfer
                                    function
    |---HFWRK1 Update work arrays
    |---UNSPRT Printout unsatureted data
    1---SOLVU2 Printout solution data
    |---HFWRK1 Update work arrays
    |---HFNDUX--- |---HFNDU1
    |---HFWRK2 Update work arrays
    |---HFHED2 Printout intecation data
    |---HFSAVD Write solution data to disk file
    |---HFBLSI---| Mass and Energy balance calculation
    | |
    | Ground water table localization
    |---GFWTBL---|---ASORT
    |---XTIME Time taking
    |---HFNFRZ Set element connectivity positive
    |---HEAX3D Transfer pressure and temperature
    |---HFIELN Redefinition of element incidences
    |---HFNDUT Nodal data output
    |---HFELUT Element incidences output
    |---HFNDUF Nodal data output
    |---HFELUF Element incidences output
    |---UNSUTl Unsaturated data output
    1---HFINP5 Rock stress parameter output
|--MFIOPS
| Megaflopcount
stop
```


2.2.2 Master subroutine

```
GFSBXI-1---XTIMEO Initialize time taking
            Input and initialization
    |---HFINSI---|---LBPHX
    M--HFINPT---TEXINU 
        selection of functions
        1
        |---FNDNF1 Density = constant
        1---FNDNE2 Density = f(P,T)
        |--FNDNF3 Density =f(P,T)
        |---FNDNF4 Linear function of T
        1---FNDNF5 Density =f(exp(T))
        |---FNDNF6 Density =f(P,T)
        |---FNVSF1 Viscosity = constant
        |---FNVSF2 Viscosity =f(T)
        |---FNVSF5 Viscosity = f(exp(T))
        |--EIFLUl Ei-function for fluid
```

1	1	1---EIGASI Ei-function for gas				
1	I	I---GAUSSP Set Gauss points				
1	I					
1	1					
1	\|---HFSET1	Initialize work arrays				
I	\|---HFTEST	Ad Hoc input parameter settings				
1	1---HFNDIN	Input nodal points				
1	1---HFELIN	Input element incidences				
1	1---HFAX3A	Transfer inital pressure and				
1	1	temperature values				
1	\|---HFNDIF	Input nodal coordinates				
1	\|---HFELIF	Input nodal incidences				
1	1---HFAX3A	Transfer of input nodal data to				
1	\|	work arrays (I.C. and B.C.)				
\|	\|---ELFRIN	Input of block specification				
।	1---ELREFM	Setup fracture plane reference arrays				
1	1---NODSWP	Reorderring of nodal arrays				
1	\|---HFPERM-	----FUNHC2 Permeability function				
1	\| (HFPRM2)					
1	,					
1	1	**** User controlled input ****				
1	1---PRGSEL-1	1			-----	------
1	1	AMINMX	Find coordinate extremes			
1	1		in x - resp. $\mathrm{y}^{\text {-direction }}$			
1	1	1 l 1				
1	1	1 DATAIO	Call subroutine to read			
1	1		data from	m disc	file	
1	1	1 l				
1	1	DATAUO	Write data to disc file			
1	1					
1	1	DRAINI	Input drain data			
I	1					
1	,	GELIN1	Input mesh parameter dat and intial gas migration conditions			
1	1					
1	।					
1	1					
I	।	GFELHC	Input parameters			for
1	।		parallel plate m			model
1	1		conceptualization and set			
1	1		element or nodal permea-			
1	1		bility a	rrays		
+	1	1 l				
1	1 \|	GFINJI	Set full gas displacement			
1	1		at "injection" nodes			
1	1	1				
1	11	\| GFRIN1	Input parameter data to set boundary and initial			
I	11					
I	1		condition			
1	1		1			
1	11	GGFSEDT	Input fracture			
1	1		distribut	tion dat		
I	11	1)				
1	1	1 GWSRCI	Input	point	mass	
I	I	I	source/s	inks	to	be
1	1	1	applied	to		Erontal
1	1	I	equation			
1	11	1				
1	1	1 HDR4B	Set the	inital	1 pre	pressur

1	1	1	distribution hydrostatic
I	1	！	（Hydrocoin Level 1，Case
1	1	1	4）
1	1	1	
1	1	1 HEAX3A	Transfer nodal data from
1	1	1	work arrays－HH－and
1	1	1	－LBHH－being read by
1	1	1	subr．HFNDIN＊to nodal
1	1	1	arrays．This is for
1	1	1	cases where the initial
1	1	1	or boundary conditions
1	1	1	have been set in grid
1	1	1	data
1	1	1－－－－－－－	－－－－－－－－－－－－－－－－－－－－
1	1	1 HFBCXI	Miscellaneous operations
1	1	1	for input of boundary
1	1	1	conditions，initial
1	1	1	values，mesh
1	1	1	modification，etc．
1	1	1	＋－－－－－－＋
1	1	1	$\mid \mathrm{HFBCX1} \mathrm{l}^{---+}$
1	1	1	＋－－－－－－＋｜
1	I	1	11
1	1	1	HFBCX2－－－－＋－HFBCI1
1	1	1	111
1	1	1	HFBCX3｜+ － HFBCI 2
1	1	1	$1 \mid 1$
1	1	1	＋－－－－－＋＋－HFBCI3
1	1	1	1
1	1	1	＋－HFBCI 4
1	1	1	1
1	1	1	＋－HFBCI5
1	1	1	1
1	1	1	＋－HFBCI6
1	1	1	1
1	1	1	＋－HFBCI7
1	I	1	1
1	1	1	＋－MODFY1－UTSLV3
1	1	1	1
1	1	1	＋－HESET2－UT1DV1
1	1	1	1
1	1	1	＋－MTOR 2D－DMINMX
1	1	1	1
1	！	1	＋－MTOR 3D
1	1	1	1
1	1	1	＋－BND2DN
1	I	1	1
1	1	1	＋－BND 3DN
！	1	1	，
1	1	1	$+-\mathrm{MROT} 2 \mathrm{D}$
1	1	1	1
1	1	1	＋－MROT3D
1	1	1－－－－－－－－	－－－－－－－－－－－－－－－－－－－－－－－－－－－
1	1	｜HFBELT	Find nodes on top boundary
1	1	1	and set prescribed flux
1	1	1	condition
1	1	1－－ーーーーー－	－－－－－－－－－－－－－－－－－－－－－－－－－－－
1	1	1 HFBFLN－	IInput boundaries with

	\|prescribed Elux
	\| conditions
	1-CHKIEL
	1-CHKSD2
	1-CHKSD 3
	1-CHKND2
	1-CHKND 3
	1-BLSORT
HFELHC	```Set element permeability (ref.value + region specification)```
HFELIF	Input element incidences (discrete system)
HFELIN	Input element incidences
HFELMP	Specify (unsaturated) material properties for elements or nodes
HFELMP	Specify (unsaturated) material properties for
HFELM1	Set element permeability according to values of -IEIMAT-
HFELPM	```Specify (unsaturated) material properties for elements or nodes```
HFELP1	Set element porosity
HFIELN	Redefine matrix of element incidences if 8-21 node hexahedral element is to be used
HFINFR	Input fracture elements
HFINP 3	Input of material properties for unsaturated conditions
HFINP 4	```set the inital pressure distribution (hydrostatic)```
HFIN4P	Set the inital pressure distribution hydrostatic for unsaturated flow conditions
HFINP 5	Input data for stress solution and input of

-24-

---AMINMX Check minimum resp.maximum coordinates of flow
|
----PHYMIN
|---PHYMAX
|---PHXMIN Boundary condition at lefthand lateral boundary
l---PHXMAX Boundary condition at righthand lateral boundary
!
|---JBAUXI Get job identification for current job
1---JBAUX3 Print out job identification
1
|---HFSAVD Storage of solution data on disk file
1


```
    |---PRSLVF Front solution
    |---HFPRU1 Printout
    Simultaneous two-phase flow
|---TPHSLV----|---GFPRED
1---GFMPS3 Time derivatives
|---HFELG1 Element integration
|---PRSLVF Front solution
|---HFPRU1 Printout
|---SFRUT1 Printout
|---HFWRK2 Update work arrays
|---GFPRT1 Printout results
|---ADJUST
|---HFLGS1 Simultaneous element
                    integration
|---PRSLV2 Front solution
|---hFAXIB
1---GFNPG3 Gas density and visc.
|---GFELG1 Gas migration integration
|---HFNFRI
|---HENFRZ
|---HFAX1A Work array transfer
|---HFPRU1 Printout gas migration
|---GMBLA1 Gas-water mass balance
---PHRES1
|---HFWRKP Update work arrays
|---HFWAV1 Weighted averages (2 time levels)
|---HFWAV2 Weighted averages (3 time levels)
|---PHSRC1 Internal mass source transfer
|---PHSRC2 Internal mass source transfer
|---HFSAVD Store solution data on disk file
---DLSCHK Gas-water interface displacement control
|---HFWRK1 Update work arrays
|
1---DRAINF
1---DRAINX
|---DRAING
    Heat flow equations - Integration of elements
|---HFTMS1---|---HFELT1----- |
    M,
```

-29-


```
|---HFSAVD Write solution data to a file
|---HFBLSI---| Mass and Energy balance calculation
            |
            |+----------------
                FFMBL1-1
                            FFMBL3-| Perform mass balance
                            for the fluid
                    -FUNDNF | |-FUNDNF
                    |-FUNVSC | |-FUNVSC
                    |-FPERM2 | |-FPERM2
                    |-HFUNSI | |-HFUNSI
                    1-HFBS2D | |-HFB3D1
                    |-JACOB2 | |-JACOB3
                    |-NRMVEC | |-JACOB4
                                    |-NRMVEC
                                    HFWQUA-| Evaluate the linear
                                    heat transfer
                I
HFWQUAEvaluate the
heat transfer
                                    function
                                    TFEBL3-| Perform energy
            TFEBLI-1
            M1
                    |-FUNDNF
                    1-FUNVSC
                    |-FPERM2
                    1-HFUNS1
                    |-HFB2D2
                    1-JACOB2
                    1-FPOR2
                    |-WDECAY
                    |-NRMVEC
                O
            I
        TREBL1-1
            TREBL1-: 
                TREBLI-| Perform energy
            | | balance for the rock
            |-JACOB2
            |-NRMVEC | 1-JACOB4
            I
                        |-HFB3D1
                        1-JACOB3
            | 1-NRMVEC
                HFBLSI
            |
            | 1
            |
        Groundwater table interpolation
    |---GFWTBL---|---ASORT
    |---XTIME Check time elapsed
    |---HFNFRZ Reset connectivity matrim to positive values
    |---HFAX3D Transfer nodal arrays to output work arrays
    |---HFIELN Reset hexahedral element definition to original
    |---HFNDUT Output of nodal points to disk file
    |---HFESUT Output of element incidences to disk file
    |---HFNDUF Output nodal points to disk file (discrete)
    |---HFELUF Output element incidences to disk file (diskrete)
    |---UNSUT1 Output unsaturated data to disk file
    |---HFINP5 Output elasticity data to disk file
    |
Return
GFSBX1
```


CONTENTS

2.3. LIST OF SUBROUTINES
2.3.1 Main programs
2.3.2 Master subroutines
2.3.3 Ehysical properties
2.3.4 Input/Output
2.3.4.1 Parameter data
2.3.4.1 Hydrostatic boundary
2.3.4.2 Prescribed flux boundary
2.3.5 Element integration
2.3.5.1 Pressure
2.3.5.2 Temperatures
2.3.5.3 Rock displacements
2.3.5.4 Basis functions
2.3.6 Equation solution 2.3.6.1 Front solution 2.3.6.2 Band solution
2.3.7 Heat transfer function
2.3.8 Mass and energy balance calculation
2.3.9 Fluid velocities
2.3.10 Heat sources (radioactive)
2.3.11 Rock stress
2.3.12 Auxiliary
2.3.13 Miscellaneous

2.3.1	Main programs
HFMAIN	- Main program to specify the sizes of most of the problem dependent arrays.
DUMMYX	- Subroutine associated with HFMAIN with dummy entries for model subroutines not to be included in current setup.
HFMAIG	- Main program to specify the sizes of most of the problem dependent arrays (Gas migration).
DUMMYG	- Subroutine associated with HFMAIG with dummy entries to replace model subroutines not to be included in current setup.
HFMFRN	- Main program to specify the sizes of most of the problem dependent arrays (Discrete modelling with stochastically generated fracture networks).
DUMMYF	- Subroutine associated with HFMFRN with dummy entries for replacement of subroutines that should not be included in current setup.
2.3 .2	Master subroutines
GFSBX1	- Principal subroutine for the model containing the overall structure of the model.
HFITER	- Subroutine for iteration control.
GFITER	- Subroutine for iteration control for two-phase flow.
P HMXC1	- Subroutine to check if changes in nodal pressures exceed given tolerance values.
HFINS1	- Main control subroutine for input and initialization
PRGSEL	- Subroutine to administer user controlled input. This subroutine contains most common blocks and work arrays used by the model programs.
MVSDE1	- Subroutine to modify the element grid. There are two options: (i) to apply a uni-directional slope by moving any of the upper corner nodes in vertical direction. (ii) to move any of the upper corners in horizontal direction.
HFPRMA	- Subroutine to set midside nodal permeability to the average value of the two adjacent corner permeability values (currently only applicable to 8-nodes quadrilateral elements).
GFPHS2	- Subroutine for solution of pressure (fluid flow equation).
PORSLV	- Porous medium flow solution.
FRCSLV	- Fractured medium solution.
PRBLCK	- Application of fluid pressure in fracture system to block system.
CCQF	- Application of internal mass sources.
PHSLV	- Two-phase flow solution subroutine.

HFTMS1 HFSTS1	- Subroutine for solution of fluid and rock tempe - Subroutine for solution of displacements.
HFEXRF	- Subroutine to input and pass external references from *HFMAIN* OR *HFMFRN* to various subroutines.
2.3.3	Physical properties
FUNDNF	- Generic function subroutine to relate the fluid density to pressure and temperature.
FNDNF1	- Function subroutine to relate the fluid density to pressure and temperature (Dummy subroutine).
	```FUNCTION FNDNFI(P,T) IMPLICIT DOUBLE PRECISION (A-H,O-Z) COMMON/HFREF1/ PREF,TREF,HCREF,PRMREF,POREF, I DNFREF,VSCREF```
	FNDNF1=DNFREF RETURN
	ENTRY FUNDNF ( $\mathrm{P}, \mathrm{T}$ )
	FUNDNF $=$ DNFREF
	RETURN
	END
FNDNF2	- Function subroutine to relate the fluid density to pressure and temperature.
	FUNCTION FNDNF2 (PP, TT)
	IMPLICIT DOUBLE PRECISION (A-H,O-Z) DATA A0, A1, A $2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5$
	$\begin{aligned} & 1 \\ & 2 \end{aligned} \quad 1.000245779,-2.9782 \mathrm{D}-05,6.536 \mathrm{D}-06,-2.830 \mathrm{D}-08,$
	$\begin{aligned} & V=T T^{*}\left(T T^{*}\left(T T^{*}(T T * A 4+\mathrm{A} 3)+\mathrm{A} 2\right)+\mathrm{A} 1\right)+\mathrm{A} 0+\mathrm{A} 5 * \mathrm{PP} \\ & \mathrm{FNDNF} 2=1000 \cdot / \mathrm{V} \\ & \mathrm{RETURN} \\ & \text { END } \end{aligned}$
	END ${ }^{\text {en }}$
FNDNF3	- Function subroutine to relate the fluid density to pressure and temperature. Fourth degree polynomial for temperature and linear relation for pressure.
	FUNCTION FNDNF3 (PR,TT)
	IMPLICIT DOUBLE PRECISION ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
	COMMON/CXA / A0, A1, A2, A3, A4, A5
	FNDNF $3=A 0+(A 1+(A 2+(A 3+A 4 * T T) * T T) * T T) * T T+A 5 * P P$
	RETURN
	END
	BLOCK DATA BLDNF3
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)
	COMMON/CXA / A0, A1, A $2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5$
	DATA A0, A1, A $2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~A} 5$
	$1 / 9.9980 \mathrm{D}+02,2.9782 \mathrm{D}-02,-6.5360 \mathrm{D}-03$,
	$\begin{aligned} & 22.8300 D-05,-9.1150 D-08,4.697 D-07 / \\ & \text { END } \end{aligned}$

FNDNF 4

ENDNF 5

FNDNF 6

FUNVSE

- Function subroutine to relate the fluid density to pressure and temperature. Linear function for temperature.


## FUNCTION FNDNF4 (RP,TT)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/COEFFI/ POR,CF,CR,CTF,DF,DR
COMMON/CXA / A0,A1,A2,A3,A4,A5 COMMON/HFREF1/ PREF,TREF, HCREF, PRMREF, 1 POREF,DNFREF,VSCREF
FNDNF4=DNFREF* (1.0-CTE*(TT-TREF))
RETURN
END

- Function subroutine to relate the fluid density to pressure and temperature. Exponential function of temperature (Used for Hydrocoin Level 2, Case 1).
$T$ is temperature and $T 0$ is ambient rock temperature
FUNCTION FNDNFS ( $\mathrm{P}, \mathrm{T}$ )
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/HFREFI/ PREF, TO,HCREF, PRMREF,
1 POREF,DNFREF,VSCREF
DATA DNFG /315.5/, TG/647.3/
DATA A1,A2,A3,A4,A5 /2.0233201, -0.49864401 ,
$1-1.0282498,0.9465529,-0.30178144 /$
$T T=T$
IF (TT.GT. 350.) THEN
WRITE $(6,910) \mathrm{TT}$
910 FORMAT (6X,'FNDNF5---T=',F7.2,' > 350 Degrees')
$T \mathrm{~T}=350$.
ENDIF
$Y G=(T G /(T T+T O+273.3)-1.0) * * 0.333333333333$
FNDNF $5=$ DNFG*EXP (YG* (A1+YG* (A2+YG* (A3
1 +YG*(A4+YG*A5))))
RETURN
END

- Function subroutine to relate the fluid density to pressure and temperature.

FUNCTION FNDNF6( $\mathrm{P}, \mathrm{T}$ )
IMPLICIT DOUBLE PRECISION ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
COMMON/CXA / A0,A1, A2, A3, A4, A5
$T \mathrm{~T}=\mathrm{T}$
IF(IT.GT.200.) THEN
$\operatorname{WRITE}(6,910) \mathrm{TT}$
910 FORMAT(6X,'FNDNF6---T=r, F7.2,' > 200. Degrees')
ENDIF
$F N D N E 6=A 0+(A 1+(A 2+(A 3+A 4 * T T) * T T) * T T) * T T$
RETURN
END


- Generic function subroutine to relate the dynamic viscosity of the fluid to the temperature of the fluid.

FNVSF 1

FNVSF 2

- Function subroutine to relate the dynamic viscosity of
the fluid to the temperature of the fluid.
FUNCTION FNVSFI (T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/HFREF1/ PREF,TREF,HCREF,PRMREF,
1
POREF, DNFREF, VSCREF
FNVSF1=VSCREF
RETURN
ENTRY FUNVSC(T)
FUNVSC = VSCREF
RETURN
END
    - Function subroutine to relate the dynamic viscosity of
the fluid to the temperature of the fluid.
FUNCTION FNVSF2 ( T)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
$\mathrm{TT}=\mathrm{T}$
IF (TT.GT. 200.) THEN
WRITE $(6,910)$ TT
910 FORMAT (6X,'FNVSF2---T=',F7.2,' > 200. Degrees')
ENDIF
FNVSF2 $=0.5858327123 *(42.9+T T) * *(-1.538389244)$
RETURN
END

FNVSF5 - Function subroutine to relate the dynamic viscosity of
the fluid to the temperature of the fluid. Exponential
function of temperature (Used for Hydrocoin Level 2,
Case 1).
T is temperature and $T 0$ is ambient rock temperature
FUNCTION FNVSFS (T)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/HFREF1/ PREF, TO,HCREF,PRMREF,
1
POREF, DNFREF,VSCREF
DATA XMYR /39.06E-6/, TMY/647.27/
DATA B1, B $2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5 / 1.5537,-0.20276,1.9107$,
$1 \quad-0.63486,0.0050468 /$
$T T=T$
IF (TT.GT.350.) THEN
WRITE $(6,910) \mathrm{TT}$
910 FORMAT (6X,'FNVSF5---T=', F7.2,' > 350 degrees')
ENDIF
$\mathrm{XMYG}=(\mathrm{TMY} /(T T+T 0+273.3)-1.0) * * 0.333333333333$
FNVSF $5=X M Y R * E X P(X M Y G * B 1+X M Y G * * 3 *(B 2+X M Y G * * 3 *(B 3$
$1+X M Y G * B 4+X Y G * * 24 * B 5)$ )
RETURN
END
-1

```
 - Function subroutine to set the permeability.
 FUNCTION FHCSET(I,K)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 COMMON/HFREF1/ PREF,TREF,HCREF,PRMREF,
 POREF,DNFREF,VSCREF
 COMMON/ANISOT/ FHCX,FHCY,FHCZ
 GOTO (10,20,30),K
 WRITE (6,910) K
 910 FORMAT(/6X,'FUNHC1---Error: K=',I5,'---Stop')
 STOP
 10 FHCSET=PRMREF*FHCX
 RETURN
 20 FHCSET=PRMREF*FHCY
 RETURN
 30 FHCSET=PRMREF*FHCZ
 RETURN
 END
```

    - Function subroutine to set the permeability. Currently,
    upon each call this function will return the reference
    value given for the permeability. Used by the following
    subroutines: HFSUB1
        FUNCTION FNHCI (IEL, DEPTH)
        IMPLICIT DOUBLE PRECISION (A-H,O-Z)
        COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM
        FNHC1=1.0D0
        RETURN
        ENTRY FUNHC2 (IEL,DEPTH)
        FUNHC2=1.0
        RETURN
        END
    - Function subroutine to set the permeability. Currently,
        upon each call this function will return the reference
        value given for the permeability.
        FUNCTION FNHC3 (IEL, DEPTH)
        IMPLICIT DOUBLE RRECISION (A-H, O-Z)
        COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM
        COMMON/IMDPTH/ IMDPTH
        COMMON/XZERO / XF1,XF2,YF1,YF2, ZF1, ZF2
        LOGICAL L1, L2
        DATA L1/.TRUE./, L2/.TRUE./
        IF (DEPTH.LT.YF1 .OR. DEPTH.GT.YF2) THEN
        FNHC3=1.0
        IF (L2) WRITE \((6,910)\) IEL, IMDPTH,DEPTH,FNHC3,FRPERM
        L2=.FALSE.
        ELSE
        FNHC3=FRPERM
        IF (L1) WRITE (6,910) IEL, IMDPTH,DEPTH,FNHC3,FRPERM
    910 FORMAT(/6X,'FNHC3---IEL=',I4,' IMDPTH=', I2,'
1 DEPTH=', F8.3/ 6X,9X,9X,'FNHC3=',1P,E12.4,'
2 FRPERM=',1P,E12.4)
L1 =. FALSE.
ENDIF

```
 RETURN
 END
 - Function subroutine to relate the permeability to the
 depth below the ground surface.
 HFNFLX,VELXY1, HFLXNU,VELXY3
 FFMBLI,TFEBL1
 FFMBL3,TFEBL3
 FPERM2
 FUNCTION FNHC2(IEL,DEPTH)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM
 IF(LFRAC1(IEL).NE.1) THEN
 FNHC2=EXP (CPERM*DEPTH)
 ELSE
 FNHC2=FRPERM
 ENDIF
 RETURN
 END
 - Generic function subroutine to relate porosity to the the
 depth below the ground surface of an element.
FNPOR1 - Function subroutine to relate porosity to the the
 depth below the ground surface of an element.
 FUNCTION FNPOR1 (IEL,XYZ,NPD)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION XYZ (3,8)
 COMMON/COEFF8/ CPOR,PORI,CPERM,PERM1,FRPERM
 COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
 FNPOR1=POR1
 RETURN
 ENTRY FPOR2(IEI,XYZ,NPD)
 FPOR2=POR1
 RETURN
 END
 --
FNPOR2 - Function subroutine to relate porosity to the the
 depth below the ground surface of an element.
 FUNCTION FNPOR2(IEL,XYZ,NPD)
 IMPLICIT DOUBLE PRECISION (A-H,O-2)
 DIMENSION XYZ (3,8)
 COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM
 COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
 IF(LFRACI(IEL).NE.1) THEN
 SUM=0.
 DO 20 J=1,NPD
 SUM=SUM + XYZ (NDIM,J)
 DEPTH=SUM/NPD
 FNPOR2=POR1*EXP (CROR*DEPTH)
 ELSE
 FNPOR2=POR1
 ENDIF
```


## RETURN

END

FNPOR3 - Function subroutine to relate porosity to the the depth below the ground surface of an element.

FUNCTION FNPOR3 (IEL,XYZ,NPD) IMPLICIT DOUBLE PRECISION ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-2$ ) DIMENSION XYZ $(3,8)$ COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM COMMON/X2ERO / XF1,XF2,YF1,YF2,ZF1,ZF2 LOGICAL L1, I2 DATA L1/.TRUE./, L2/.TRUE./ DEPTH=FDPTH2 (XYZ)
IF (DEPTH.LT.YF1 .OR. DEPTH.GT.YF2) THEN
FNPOR3=POR1
IF (L2) WRITE (6,910) FNPOR3,IEL,DEPTH
L2 $2=. \mathrm{FALSE}$.
ELSE
FNPOR3=POR1*CPOR
IF (L1) WRITE $(6,910)$ FNPOR3, IEL,DEPTH
910 FORMAT(/6X,'FNPOR3---NOW set porosity=',F7.5,
1 ' in element $=^{\prime}$, I4,' DEPTH=', F8.4)
L1=. FALSE .
ENDIF
RETURN
END
- Subroutine to determine the permeabilities at the nodes
of an element by multiplying the element permeability
by a factor corresponding to the depth of respective
node.
SUBROUTINE FPERM2 (IEL, XYZ, HCN)
IMPIICIT DOUBLE PRECISION ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
DIMENSION XYZ $(3,8), \operatorname{HCN}(3,8)$
COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
COMMON/IMDPTH/ IMDPTH
GOTO 5
ENTRY ERERM3 (FUNHC2)
WRITE $(6,920)$
920 FORMAT (/6X,' FPERM3---Now set function:
1 FUNHC2 - in FPERM2')
RETURN
5 CONTINUE
IF (IMDPTH.NE.1) THEN
DO $10 \mathrm{~J}=1$,NNODE
PERMC=FUNHC2 (IEL, XYZ (NDIM, J))
$\operatorname{HCN}(1, J)=\operatorname{HCN}(1, J) *$ EERMC
$\operatorname{HCN}(2, J)=\operatorname{HCN}(2, J) *$ PERMC
$\operatorname{HCN}(3, J)=\operatorname{HCN}(3, J) *$ PERMC
10 CONTINUE
ELSE
DEPTH=FDPTGH2 (XYZ)
PERMC=FUNHC2 (IEL, DEPTH)
DO $30 \mathrm{~J}=1$, NNODE

```
 HCN (1,J)=HCN (1,J)*PERMC
 HCN (2,J) =HCN (2,J)*RERMC
 HCN (3,J) =HCN (3,J) *PERMC
 30 CONTINUE
 ENDIF
 RETURN
 END
FDPTH2 - Function to compute the depth of the centroid of an
 element. Used by the following subroutines:
 HFNFLX, VELXYI
 FUNCTION FDPTH2(XYZ)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION XYZ (3,8)
 COMMON/ELEMNO/ IEL
 COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
 IF(NNODE.GT.1) THEN
 SUM=0.0
 DO 10 J=1,NNODE
 10 SUM=SUM + XYZ (NDIM,J)
 FDPTH2=SUM/NNODE
 ELSE
 WRITE (6,910) IEL,NNODE,NDOF,NDIM
 910 FORMAT(/6X,'FDPTH2---IEL=',I4,' NNODE=',I4,' NDOF=',II,
 1 ' NDIM=',I2)
 WRITE (6,920) (XYZ (1,J), XYZ (2,J),J=1,3)
 920 FORMAT(/6X,'FDPTH2---XYZ: ',6F7.1)
 WRITE (6,930)
 930 FORMAT (6X,9X,'Execution terminated')
 stop
 ENDIF
 RETURN
 END
 - Subroutine to apply a given function (DECAY) for the
 radioactive decay.
 SUBROUTINE WDCAY1 (WHS,NS)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 DIMENSION WHS (NS)
 COMMON/CNTRL3/ NSTEP,ITER,TIME,DT,PHERMX,TFERMX,TRERMX
 COMMON/TIMEI / TIMEI
 CHARACTER*6 DCAY
 LOGICAL L1,L2
 DATA L1/.TRUE./. L2/.TRUE./
 ENTRY WDECAY(WHS,NS)
 GOTO 10
 ENTRY WDCAY2(DCAY,DECAY)
 WRITE (6,910) DCAY
910 FORMAT (/6X,' WDCAY2---NOW specified
 1 the decay function: ',A6)
 RETURN
 10 CONTINUE
 IF (L1) WRITE (6,901) DCAY,NS
901 FORMAT(6X,'WDCAY1---NOw entered
 1 - DCAY=',A6,' NS=',I2)
```

```
 LI=.FALSE.
 IF (NS.GT.0) THEN
 WFAC=DECAY(TIME,DT,TIME1)
60 DO 80 J=1,NS
 WHS (J) =WHS (J) *WFAC
80 CONTINUE
 IF (L2) WRITE (6,920) TIME,TIME1,WFAC
920 FORMAT (/6X,'WDCAY1---TIME=',1P,E10.3,'
 1 TIME1=',1P,E10.3, ' WEAC=',1P,E10.3)
 L2=.FALSE.
 ENDIF
 RETURN
 END
WDCAY2
- Entry to *WDCAY1* .
DECAY1 - Function to interpolate the radioactive decay of a
 heat source.
 FUNCTION DECAYI(TIME,DT,TIME1)
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 LOGICAL L1
 DATA L1/.TRUE./
 DECAY1=1.0
 IF(L1) WRITE(6,920) TIME,TIME1,DECAY1
920 FORMAT(/6X,'DECAY1---TIME=',1P,E10.3,'
 1 'TIME1=',1P,E10.3,'DECAY1=',1P,E10.3)
 LI=.FALSE.
 RETURN
 ENTRY DECAY (TIME,DT,TIMEI)
 DECAY=1.0
 RETURN
 END
DECAY2 - Function to interpolate the radioactive decay of a
 heat source. Exponential decay of two nuclides.

 FUNCTION DECAY2(TIME,DT,TIME1)
 IMPLICIT DOUBIE PRECISION (A-H,O-Z)
 COMMON/HFREF3/ A1,AL1,A2,AL2
 LOGICAL L1
 DATA LI/.TRUE./
 C1=TIME-0.5*DT
 IF (TIME.GT.TIME1+0.001) GOTO 40
 IF(TIME1.LE.O.) GOTO 20
 DECAY2=C1/TIME1
 GOTO 60
 20 WRITE (6,910) TIME,TIME1
910 FORMAT (/6X,'DECAY2---Error:TIME=',1P,E10.3,'
 1 TIME1=',1P,E10.3, 'Stop')
 STOR
 40 CONTINUE
 DECAY2=A1*EXP(-AL1*C1) + A2*EXP(-AL2*C1)
 6 0 ~ C O N T I N U E ~
 IF(L1) WRITE(6,920) TIME,TIME1,DECAY2
920 FORMAT(6X,'DECAY2---TIME=',1P,E10.3,'
 1 TIME1=',1P,E10.3,' DECAY2=',1P,E10.3)
 L1=.FALSE.
```

RETURN
END

DECAY3 - Function for time dependent energy output for Hydrocoin Level 2, Case 1.

FUNCTION DECAY3(TIME,DT,TIME1)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL L1
DATA LI/.TRUE./
CALL SHWTOT (TIME,HWTOT)
DECAY3 = HWTOT
IF (L1) WRITE (6,920) TIME,TIME1,DECAY3
920 FORMAT ( 6X,'DECAY3---TIME=',1P,E10.3,'
1 TIME1 1 ', 1P,E10.3,' DECAY3 $={ }^{\prime}, 1 \mathrm{P}, \mathrm{E} 10.3$ )
LI=. FALSE.
RETURN
END

CHKSTP - Dummy subroutine to control the time step scheme (SETSTP)

SUBROUTINE CHKSTE
IMPLICIT DOUBLE PRECISION ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
COMMON/CNTRL2/ MXSTEP,MXITER,DTFAC,PHERTL,
1 TFERTL,TRERTL
COMMON/CNTRL3/ NSTEP,ITER,TIME,DT,PHERMX,
1 THERMX,TRERMX
WRITE $(6,910)$ NSTEP, TIME, DT
910 FORMAT (/6X,'CHKSTP---NSTEP=', I2,'
TIME=', 1P, E12.4,
1 r $\mathrm{DT}={ }^{\prime}, \mathrm{E} 12.4$ )
RETURN
ENTRY SETSTP (INUN)
WRITE $(6,920)$ INUN
920 FORMAT ( 6 X, 'SETSTP (CHKSTP) ---Dummy
1 function entry - INUN=', I2)
RETURN
END

CHKST1 - Subroutine to control the time step scheme (SETST1) Logarithmic time stepping.

Description of parameters:
DTIME(1) - Initial subinterval
NCYCLE - Number of cycles
NFAC - Number of subintervals within each cycle
FAC - Array of length -NFAC- containing factors for subintervals
Example of input:
$\operatorname{DTIME}(1)=3.15576 e 7, \quad$ NCYCLE=4, $N F A C=7$
$\operatorname{FAC}(1)=0.5, \quad \operatorname{FAC}(2)=0.5, \quad \operatorname{FAC}(3)=1.0$, $\operatorname{FAC}(4)=1.0, \quad \operatorname{FAC}(5)=2.0, \quad \operatorname{FAC}(6)=2.0$, $\operatorname{FAC}(7)=2.0$
Output: $\operatorname{DTIME}(2)=1.58 \mathrm{e} 7, \operatorname{DTIME}(3)=1.58 \mathrm{e} 7$,

```
 DTIME (4) =3.16e7, DTIME (5) =3.16e7,
 DTIME (6) =6.31e7, DTIME (7) =6.31e7,
 DTIME (8)=6.31e7, DTIME (9)=1.58e8,
 DTIME (10)=1.58e8, DTIME (11)=3.16e8,
 etc.
 Note: the subintervals were here multiplied
 with 365.25*86400 to get the times
 in seconds
 SUBROUTINE CHKSTI
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 COMMON/CNTRL2/ MXSTEP,MXITER,DTFAC,
 1 PHERTL,TFERTL,TRERTL
 COMMON/CNTRI3/ NSTER,ITER,TIME,DT,
 I
 COMMON/DTIMEP/ DTIMEP (101),MXNT,NT
 DIMENSION FAC(10)
 DTFAC=1.0
 IF(NSTEF.GT.NT) THEN
 WRITE(6,905) NSTEP,NT
905 FORMAT (/6X,'CHKST1---Warning:NSTEP=',I3,' > NT=',I3)
 DT=DTIMEP (NT)
 ELSE
 DT=DTIMEP (NSTEP)
 ENDIF
 WRITE (6,910) NSTEP,TIME,DT,DTEAC
910 FORMAT (/6X,'CHKST1---NSTEP=',I2,'
 1 TIME=',1P,E12.4, 'DT=',1P,E12.4,' DTFAC=',OP,F7.3)
 RETURN
 ENTRY SETST1(INUN)
 WRITE (6,915) INUN
915 FORMAT(/6X,'SETST1 (Entry to CHKST1*) - INUN=',I2)
 READ (INUN, 820)
 1
 DTIMEP (1),NCYCLE,NFAC, (FAC (I),I=1,NFAC)
820 FORMAT (F10.0,2I5,10F5.0)
 WRITE (6,920) DTIMEP(1),NCYCIE,NFAC, (FAC (I),I=1,NEAC)
920 FORMAT (/6X,'SETST1---DTIMEP(1)=',1P,E12.4/
 1 6X,9X,'NCYCLE =',I12/
 2 6x,9X,'NFAC =',I12/
 3 6X,'FAC:',1P,5E12.4/(6X,4X,5E12.4))
 MXNT=101
 NT=NCYCLE*NFAC + 1
 IF (NT.GT.MXNT) THEN
 NRITE (6,960) NT,MXNT
960 FORMAT(/6X,'SETST1---Error: NT=',I2,'
 1 > MXNT='.,I2,' Stop')
 ENDIF
 POWER=365.25*86400.
 DTIMEP (1)=DTIMEP (1)*POWER
 DO 60 K=1,NCYCLE
 I=(K-1)*NFAC+1
 DO 50 J=1,NFAC
 NT=I+J
 IF(I+J.GT.MXNT) GOTO 70
 DTIMEP(I+J)=FAC (J)*ROWER
 POWER=10.*POWER
 WRITE (6,940) NT
 FORMAT(/6X,'SETST1---NT=',I2,'
 1
 LOGARITHMIC TIME INCREMENTS')
```

```
WRITE (6,950) (DTIMEP(IT),IT=1,NT)
950 EORMAT(6X,1P,4E15.5)
RETURN
END
```

CHKST2 - Subroutine to control the time step scheme
SUBROUTINE CHKST2
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON/CNTRI2/ MXSTEP,MXITER,DTFAC,
1 PHERTL,TFERTL,TRERTL
COMMON/CNTRL3/ NSTEF, ITER,TIME,DT,
1 PHERMX, TFERMX, TRERMX
COMMON/DTIMEP/ DTIMEP (101), MXNT, NT
DTFAC=1.0
IF (NSTEP.GT.NT) THEN
WRITE $(6,905)$ NSTEP, NT
905 FORMAT (/6X, 'CHKST2--WWarning:
$\left.1 \mathrm{NSTEP}=^{\prime}, I 3, '>N T=\prime, I 3\right)$
DT=DTIMEP (NT)
ELSE
DT=DTIMEP (NSTEP)
ENDIF
WRITE $(6,910)$ NSTEP,TIME,DT, DTFAC
910 FORMAT (/6X,'CHKST2--NSTEP=', I2,' TIME=',1P,E12.4,
1 ' DT=',1P, E12.4,' DTEAC=',0P,F7.3)
RETURN
ENTRY SETST2 (INUN)
WRITE $(6,915)$ INUN
915 FORMAT (/6X,'SETST2 (Entry to CHKST2*) - INUN=', I2)
READ (INUN, 820) DTIMEP (1) , NCYCLE, NSUB
820 FORMAT (F10.0,2I5)
$\operatorname{IF}(\mathrm{DTIMEP}(1) . E Q .0 .0) \operatorname{DTIMEP}(1)=1.0 \mathrm{E}-1$
IF (NCYCLE.EQ.0) NCYCLE=5
IF (NSUB.EQ.0) NSUB=1
WRITE $(6,920)$ DTIMEP (1), NCYCLE, NSUB
920 FORMAT (/6X,'SETST2---DTIMEP (1) =', 1P, E12.4/
$16 \mathrm{X}, 9 \mathrm{X},{ }^{\prime}$ NCYCLE $=^{\prime}, I I 2 /$
2 6X,9X,'NSUB $\quad{ }^{\prime}$, I12)
$\mathrm{MXNT}=101$
$\mathrm{NT}=4$ * $\mathrm{NCYCLE}+1$
IF (NT.GT.MXNT) GOTO 80
$I=1$
ROWER=DTIMEP (1)
60 DTIMEP $(I+1)=1 . * P O W E R$
DTIMEP $(I+2)=2 . *$ OOWER
DTIMEP $(I+3)=3 . *$ PONER
DTIMEP $(I+4)=3 . *$ POWER
$J=I+4$
IF (J.EQ.NT) GOTO 70
$I=I+4$
POWER=10. *POWER
GOTO 60
$70 \mathrm{WRITE}(6,940) \mathrm{NT}$
940 FORMAT (/6X,'SETST2-- $\mathrm{NT}={ }^{\prime}$, I2,'
1 Logarithmic time increments')

```
 WRITE(6,950) (DTIMEP(IT),IT=1,NT)
 950 FORMAT (6X,1P,4E15.5)
 IF(NSUB.GT.1) THEN
 MXK=NSUB*NT
 DO 76 I=NT,1,-1
 DTIMEP (I) =DTIMEP (I)/REAL (NSUB)
 DO }75\textrm{J}=1,NSU
 K=NSUB*(I-1) + J
 IF(K.GT.MXNT) THEN
 MXK=MXNT
 GOTO }7
 ELSE
 DTIMEP (K)=DTIMEP (I)
 ENDIF
75 CONTINUE
7 6 ~ C O N T I N U E ~
 NT=MXK
 WRITE(6,*) ' SETST2---NT=',NT
 WRITE (6,950) (DTIMEP(IT),IT=1,NT)
 ENDIF
 RETURN
 80 WRITE (6,960) NT,MXNT
960 FORMAT(/6X,'SETST2---Error: NT=',I2,' >
 I MXNT=',I2,' Stop')
 STOP
 END
CHKST3 - Subroutine to control the time step scheme
 (SETST3)
 SUBROUTINE CHKST3
 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
 COMMON/CNTRL2/ MXSTEP,MXITER,DTFAC,
 1 PHERTL,TFERTL,TRERTL
 COMMON/CNTRL3/ NSTEP,ITER,TIME,DT,
 1
 PHERMX,TFERMX,TRERMX
 DATA DTFAC1/1.2/, DTFAC2/1.5/, ISTEP/7/
 WRITE(6,910) NSTEP,TIME,DT,DTFAC
910 FORMAT(/6X,'CHKST3---NSTEP=',I2,' TIME=',1P,E12.4,
 1 ' DT=',1P,E12.4,' DTFAC=',0P,F7.3)
 IF(NSTEP-ISTEP) 10,20,30
10 DTFAC=DTFAC1
 GOTO 40
 20 WRITE (6,920) DTEAC1,DTFAC2
920 FORMAT(6X,'CHKST3---NOW changing
 1 the time step multiplier','from', F6.3,' into',F6.3)
 30 DTFAC=DTFAC2
 4 0 ~ W R I T E ~ (6 , 9 3 0) ~ D T F A C ~
930 FORMAT(6X,'CHKST3---Time step control---DTFAC=',F5.3)
 RETURN

 ENTRY SETST3(INUN)
 WRITE (6,915) INUN
915 FORMAT(/6X,'SETST3 (Entry to CHKST3*) - INUN=',I2)
 RETURN
 END
```

```
CHKST4 - Subroutine to control the time step scheme
 (SETST4) All time steps specified in input.
 SUBROUTINE CHKST4
 IMPLICIT DOUBLE RRECISION (A-H,O-Z)
 CHARACTER*20 DTIMES
 COMMON/CNTRL2/ MXSTEP,MXITER,DTFAC,PHERTL,TFERTL,TRERTI
 COMMON/CNTRL3/ NSTEP,ITER,TIME,DT,PHERMX,TFERMX,TRERMX
 COMMON/DTIMEP/ DTIMEP(101),MXNT,NT
 DTFAC=1.0
 IF(NSTEP.GT.NT) THEN
 WRITE (6,905) NSTEP,NT
905 FORMAT(/6X,'CHKST4---Warning: NSTEP=',I3,' > NT=',I3)
 DT=DTIMEP (NT)
 ELSE
 DT=DTIMEP (NSTEP)
 ENDIF
 WRITE(6,910) NSTEP,TIME,DT,DTFAC
 910 FORMAT(/6X,'CHKST4---NSTEP=',I2,' TIME=',1P,E12.4,
 1 ' DT=',1P,E12.4,' DTFAC=',OP,F7.3)
 RETURN
 ENTRY SETST4(INUN)
 WRITE (6,915) INUN
 915 FORMAT(/6X,'SETST4 (Entry to CHKST4*) - INUN=',I2)
 READ (INUN,816) DTIMES
 816 FORMAT (A20)
 WRITE (6,918) DTIMES
 918 FORMAT(/6X,'SETST4---',A20)
 MXNT = 101
 READ (INUN, 820) NT,TFAC
 820 FORMAT(I5,F15.0)
 IF(NT.GT.MXNT) THEN
 WRITE (6,920) NT,MXNT
920 FORMAT(6X,9X,' NT=',I3,' > MXNT=',I3,'Stop')
 STOP
 ENDIF
 IF(TFAC.EQ.0.0) TFAC=365.25*86400.
 READ (INUN,*,END=20) (DTIMEP(I),I=1,NT)
 WRITE (6,925) NT,TFAC, (DTIMEP (I),I=1,NT)
 925 FORMAT(6X,'SETST4---NT=',I3,
 1 ' Conversion factor (TFAC) =',1P,E13.6,
 2 ' TIMEP:'/(6X,1P,7E10.3))
 NT = NT-1
 DO 10 I=1,NT
10 DTIMEP(I) = (DTIMEP(I+1) - DTIMEP(I))*TFAC
 WRITE (6,926) NT, (DTIMEP(I), I=1,NT)
926 FORMAT(6X,'SETST4---NT=',I3,' DTIMEP:'/(6X,1P,7E10.3))
 RETURN
 20 WRITE(6,*) ' SETST4---End of file - INUN',INUN
 stop
 END
 --
2.3.4 Input/Output
2.3.4.1 Parameter data
```

HFINPT	- Subroutine to input miscellaneous solution parameters, material properties etc.
TEXINU	- Auxiliary subroutine to read and optionally print out header records for input of parameter data.
HFMSRC	- Subroutine to input mass sources.
EXFUN1	- Subroutine for transfering of external function names for fluid density, dynamic viscosity, permeability, porosity and radioactive decay.
FDENF	- Subroutine for transfering of selected function for fluid density.
FVISF	- Subroutine for transfering of selected function for dynamic viscosity.
FVSG	- Subroutine to transfering of function selected for dynamic viscosity of the gas to subroutines using gas viscosity.
FHC2	- Subroutine for transfering of selected function for permeability.
FPOR	- Subroutine for transfering of selected function for porosity.
FDECAY	- Subroutine for transfering of selected function for radioactive decay.
GAUSSP	- Subroutine to set coordinates of sampling points for the integration formulae 3 by 3 (by 3) rule, or 4 by 4 (by 4) rule.
GAUSSX	- Subroutine to check element type and set Gauss points accordingly.
HFHEAD	- Subroutine to output headings, etc.
HFNDIN	- Subroutine to input coordinates of nodal points and nodal data. This subroutine has the following additional entries:
	HFNDUT - For the output of nodal data
	Hfelin - For the input of element incidences
	HFgLUT - For the output of element incidences
HFNDPR	- Subroutine to printout coordinates of nodal points.
HFELPR	- Subroutine to printout the element incidences.
BLTYPX	- Block data to initiallize the number of nodes per element, the number of degrees of freedom per nodes and the total number of degrees of freedom per element.
HFTEST	- Subroutine for Ad Hoc setting of input parameters.
HFSET1	- Subroutine to initialize work arrays.
HFAX1A	- Subroutine to transfer initial nodal pressure values previously being input to the arrays -HH- and -LBHHin subroutine $H F N D I N^{*}$.
HFAX2B	- Entry (HFAXIA) to transfer pressure and fluid temperature data to the work arrays --HH- and -LBHH-.


HFWRKI	- Subroutine to store current values of pressure and temperatures (or alternatively gas pressure) into work arrays to be used during the next time step.
UTLBHH	- Subroutine for the tabulation of nodal data.
HFOUT1	- Subroutine to printout work arrays. This subroutine has the following additional entries:   HFOUT2 - For the output of pressure arrays   HFOUT3 - For the output of temperature arrays
HFINFR	- Subroutine to input list of fracture elements
LFRAC1	- Function subroutine to check if a given element is included in the list of fracture elements as given to HFNFRC*.
SELEM1	- Subroutine to locate elements which constitutes either a vertical or horizontal fracture zone.
HFIELN	- Auxiliary subroutine to redefine the matrix of the element incidences.
HFPERM	- Subroutine to set the array for nodal permeabilities.
HFELHC	- Subroutine to set the matrix for element permeabilities constant over each element.
HFELM1	- Subroutine to set element permeabilities according the value of IELMAT*.
HFELP1	- Sbroutine to set element porosity.
HFINP3	- Subroutine to input material properties for unsaturated conditions.
UNSPRT	- Subroutine to printout unsaturated nodes.
BLINP 3	- Block data to initialize printout parameter used in subroutine HFINP3*.
UNSIN1	- Subroutine to input pelationships for   Saturation- pressure   Saturation- relative permeability   Saturation- derivatives.
UNSUT1	- Alternative entry for storage of unsaturated data on dsic.
PSINP1	- Program to get hydraulic properties for unsaturated flow testing.
PSIFN1	- Function to get a capillary curve for testing.
HFUNS 1	- Subroutine to find the hydraulic properties for unsaturated conditions.
HFINP 4	- Subroutine with various options for setting the boundary conditions for some test ezamples.
MODFYX	- Subroutine to modify an element mesh to account for the bore-hole radius.
PRMSEI	- Subroutine to set a linear variation in permeability for a given region.


HFELMP	- Subroutine to specify material properties to be associated with elements unsaturated flow conditions saturetion-capillary pressure saturation-pelative permeability.
HFINP 5	- Subroutine to input material properties of the rock.
HFINP 6	- Subroutine to set boundary conditions for the solution of displacements for some test problems.
HFNDUV	- Subroutine to read in solution values from permanent disc file. The file is read until "END OF FILE" is encountered.
HFNDU1	- Subroutine to read in solution values from a permanent disc file. The data for one time step is read and returned.
HFSAVD	- Subroutine to write the solution values on a disc file for subsequent use.
HF'NDUX	- Subroutine for unformatted input of nodal values this subroutine reads data for one time step at each call upon the subroutine.
HFNDU2	- Alternative entry to output nodal data to a disc file.
HFBCX1	- Subroutine to input data of boundary conditions and/or initial values. The purpose of this subroutine is also to check which variable(s) to be taken into account.
HFBCX2	- Complementary subroutine to HFBCX1* to select subroutine to perform the action, as specified by the input to HFBCXI*
HFBCX3	- Complementary subroutine to HFBCX1* this subroutine is usded for displacements.
MROT2D	- Subroutine to rotate an element mesh this subroutine rotates the mesh 90 degrees in the X-Y plane.
HFBN2U	- Subroutine to prescribed displacements at either of the leftmost or rightmost boundaries.
PHYDRS	- Program for integration of pressure under hydrostatic conditions.
HSITER	- Subroutine to determine perssure under hydrostatic conditions with heat effects.
HFBCII	- Subroutine to assign specified code and value to the set of nodes as specified by the input list.
HFBCI2	- Subroutine to assign specified code and value to nodes specified by the program itself.
HFBCI3	- Subroutine to assign a specified code and linear function values to the nodes as specified on the input list.
HFBCI 4	- Subroutine to assign values according to a specified linear function to all nodal points.
HFBCI5	- Subroutine to assign nodal values to a given list of nodes.


MODFY1	- Subroutine to modify the nodal coordinates of the element mesh, e.g. to scale or tranform the original element mesh.
MTOP2D	- Subroutine to modify the top boundary of the element mesh for a given unidirectional slope (2-D version).
MTOP 3D	- Subroutine to modify the top boundary of the element mesh for a given unidirectional slope (3-D version).
BND2DN	- Subroutine to locate the top and bottom boundary nodes and to specify boundary conditions (2-D version).
BND 3DN	- Subroutine to locate the top and bottom boundary nodes and to specify boundary conditions (3-D version).
DMINMX	- Auxiliary subroutine to find the maximum respectively minimum values of an array.
HFWAV1	- Subroutine for the calculation of weighted averages using the most recent iteration.
HFWAV2	- Alternative entry for the calculation of weighter averages using the most recent iteration values.
HFWAV3	- Subroutine for the calculation of weighted averages using the most recent iteration values.
HFWAV2	- Alternative entry for the calculation of weighted averages using the most recent iteration values.
SOLVUT	- Subroutine for output of solution values. This subroutine calls in its turn the following subroutines:
	UTSLVI - For the output of one variable
	UTSLV2 - For the output of two variables
	UTSLV3 - For the output of three variables
	UTSLV4 - For the output of four variables
	UTSLV5 - For the output of five variables
UTSOLV	- Subroutine for output of a single variable array. The present version of this subroutine is identical with *UTSLV1*
SOLVU2	- Subroutine to printout the displacement vectors at selected nodes.
UNSPRT	- Subroutine to printout unsaturated nodes.
NDPRT2	- Subroutine for nodal printout. This version prints out coordinates, pressure, fluid velocities, temperature and heat soruces for a given set of nodes (2-D version)
NDPRT3	- Subroutine for nodal printout. This version prints out coordinates, pressure, fluid velocities, temperature and heat soruces for a given set of nodes (3-D version).
SEINDS	- Subroutine to input nodes selected for printout by subroutines NDPRT2 or NDPRT3.
BLUTVL	- slock data to initialize MXNPRT* and MXNHS*.
UTSLV1	- Subroutine to output solution values.
UTSLV2	Subroutine to output values of two arra


UTSLV3 UTSLV4	- Subroutine to output values of three arrays   - Subroutine to output values of four arrays.
UTSLV5	- Subroutine to output values of five arrays.
hfrerui	- Subroutine to printout nodes with prescribed pressure.
2.3.4.2	Hydrostatic boundary
PHYDRO	- Subroutine for the generation of hydrostatic boundary conditions.
PRITER	- Complementary subroutine to *PHYDRO*.
2.3.4.3	Prescribed flux boundary
HFBFLW	- Subroutine for the input of prescribed flux boundary conditions.
CHKIEL	- Complementary subroutine to *HFBFLW* to find the element which contains four corner nodes defining one of the sides of the element.
CHKSD 2	- Complementary subroutine to *HFBFLW* to indentify the element side which corresponds to four (global) nodes given as input to speaify the element side under consideration (2-D quadri-lateral elements).
CHKSD3	- Complementary subroutine to *HFBFLW* to indentify the element side which corresponds to four (global) nodes given as input to specify the element side under consideration (3-D hexahedral elements).
CHKND 2	- Complementary subroutine to *HFBFLW* to input the prescribed flux at a given element side (2-D quadri-lateral elements).
CHKND 3	- Complementary subroutine to *HFBFLW* to input the prescribed flux at a given element side (3-D hexahedral elements).
FQSTOR	- Complementary subroutine to *HFBFLX* to input the prescribed flux at an element side.
BLSORT	- Complementary subroutine to sort the array of element numbers associated with elements containing prescribed flux boundaries.
INTFLX	- Subroutine to compute the coefficients of an element at a Gauss point for an element subject to precribed flux.
IELCHK	- Subroutine to check if a given element number is included among the list of elements subject to prescribed flux.
BLIELX	- Block data to initialize local node number definition of element sides.
LSDEF1	- Subroutine to read or to print element side definitions.
LSDEF2	- Entry for printout of element side definitions.

### 2.3.5 Element matrix generation

2.3.5.1	Fluid flow
HFELF1	- Subroutine to compute and store the element matrix systems when solving for pressure. Matrix systems are reduced during assembly. Element matrices may optionally be stored on a disk file for subsequent use.
HFSEEP	- Subroutine to check if current node is a seepage node and to set the boundary conditions accordingly.
NODSLC	```- Subroutine to locate nodes with in a region spcified as: XI< X < X2 Y1<Y < Y2 Z1<Z< Z2```
NODLOC	- Subroutine to locate element associated with given nodes
NODLC2	- Subroutine to find the last appearance in the element incidences for a given set of numbers.
NODSL2	- Subroutine to locate nodes.
NODSL3	- Subroutine to indentify elements and their related nodes for given region specifications.
NODSL4	- Subroutine to indentify elements and their related node for given region specifications.
PREM2D	- Preprocessing subroutine for graphical display of an element mesh (in 2-D or 3-D).
IBASRT	- Subroutine to sort two integer arrays into mutually ascending order.
ABSORT	- Subroutine to sort two real arrays into mutually ascending order.
GFWTBL	- Subroutine to locate the position of the water table assumed to be at zero pressure.
HFL2D 1	- Subroutine to form the basic types of integraton matrices as required to solve the pressure equation. This subroutine administers the sampling points for the integration formulae.
HFL 2 DA	- Subroutine to form the basic types of integraton matrices as required to solve the pressure equation. This subroutine administers the sampling points for the integration formulae.
HFL2D5	- Subroutine to form the basic types of integraton matrices as required to solve the pressure equation. This subroutine administers the sampling points for the integration formula (This version is for swi-symmetric flow).
HFUNS 1	- Subroutine to check unsaturated conditions.
HFUNS2	- Subroutine to find saturation corresponding to current pressure.
HFUNS3	- Subroutine to find the derivative of saturation versus pressure.


HFUNS 4	- Subroutine to find relative permeability corresponding to current pressure.
LOCINT	- Subroutine to perform linear interpolation in capillarysaturation and rel. permeability-saturation functions.
HFLGA1	- Subroutine to evaluate basis functions and Jacobians at the sampling points for the quadrature formulae.
RESID1	- Subroutine to compute the residual vector for NewtonRaphson ( $N-R$ ) iteration.
PHRES 1	- Subroutine to apply $N-R$ corrections.
HFMAUX	- Subroutine to transfer the effective matrix system to the work storage.
IELTST	- Subroutine to check if current element should be supplied with printout messages.
HFBF2D	- Subroutine to perform integration of prescribed boundary flux for $2-d$ element surfaces.
HFBF3D	- Subroutine to perform integration of prescribed boundary flux for $3-\mathrm{d}$ element surfaces.
HFMP H1	- Subroutine to setup matrix systems for each element (fluid flow equation).
HFMP H2	- Subroutine to apply finite differencing of the time derivatives to the element matrix systems (fluid flow equation).
HFIGAW	- subroutine for calculation of integration matrices at Gauss point level.
HFLBLK	- Subroutine to form integration matrices for a fractured medium.
HFIGAB	- Computes basis function values at Gaussian quadrature points to form integration matrices block elements.
HFMPB1	- Compute the element contributions for the global matrix system.
HFMPB2	- Subroutine to rearrange the element matrix system into an effective matrix system.
HFL2DU	- Forms basic integration matrices.
HFLGAU	- Computes basic function values at Gaussian quadrature points to form integration matrices.
HFMPU1	- Compute the element contributions for the global matrix system.
HFMPU2	- Subroutine to rearrange the element matrix system into an effective matrix system.
AMOUT1	- Subroutine to printout the work matrix during the element assembly.
2.3.5.2	Heat flow
HFTMS 1	- Subroutine to govern heat flow calculation


HFSRCX	- Subroutine to input distributed and concentrated heat sources.
HEATEN	- Subroutine to apply a smooth transition for a distributed heat source.
HFSRC1	- Subroutine to input point or distributed heat sources.
HFSRC3	- Auxiliary subroutine to apply point heat sources associated with current element to the element matrix system.
HFSRC4	- Subroutine to evaluate heat sources associated with mass sources.
BLSRC 4	- Block data to initialize some counter variables for heat sources associated with the mass sources.
SHWTIN	- Subroutine to read time values (in days) and the corresponding total heat source values for Hydrocoin Level 2 Case 1.
SHWTOT	- Subroutine for table look-up of the energy output corresponding to a given time value in days.
HFELT1	- Subroutine to compute and store the element matrix systems when solving for fluid and rock heat flow.
HFL2DW	- Subroutine to form the basic types of integraton matrices as required to solve the pressure equation. this subroutine administers the sampling points for the integration formulae.
HFINTG	- Heat flow integration at Gauss point level.
HFL 2 DT	- Subroutine to update integration matrices.
HFL2D 6	- Subroutine to form the basic types of integraton matrices as required to solve the pressure equation. this subroutine administers the sampling points for the integration formulae.
HFLGA2	- Subroutine to pick up basis function values and Jacobians associated with the sampling points.
HFLGZ1	- Subroutine to zero element matrices.
HFLGZ2	- Alternative entry to zero work array.
HFELU1	- Subroutine to prepare the input of element matrices to the band solution programs.
hFMTF1	- Subroutine to setup matrix systems for each element (fluid temperature equation).
HFMTF2	- Subroutine to apply finite differencing of the time derivatives to the element matriz systems (fluid temperature equation).
HFMTR1	- Subroutine to setup matrix systems for each element (rock temperature equation).
HFMTR2	- Subroutine to apply finite differencing of the time derivatives to the element matrix systems (rock temperature equation).


HEXȦ21	- Subroutine to compute values of the basis functions and their derivatives for a (8-20 nodes) curvilinear isoparametric element.
HFSRC2	- Auxiliary subroutine to check current element comprises any heat sources.
HFLMTM	- Subroutine to form the systern of simultaneous element matrices for the input to the frontal solutions programs.
htelma	- Subroutine to form a simultaneous matrix system for an element.
HFWFUN	- Subroutine to evaluate the heat transfer function for each nodal point.
HFWUPD	- Alternative entry to update the temperature records.
HFTFUT	- Alternative entry to output records of the fluid temperature.
HFWSET	- Subroutine to zero fluid temperature records.
HFWFN1	- Subroutine to evaluate the heat transfer function for a node at a given time step.
TFPRE1	- Subroutine for simple prediction of the fluid temperature at current time level.
BLMAIN	- Block data to initialize logical file
HFWCAI	- Subroutine to set array of heat transfer function values.
INTEG1	- Subroutine for the calculation of conductive element matrices.
INTEG2	- Subroutine for the calculation of element matrices associated with time derivatives, distributed heat sources, etc. Coefficients are assumed to be constent.
INTEG3	- Subroutine for calculation of element matrix associated with time derivatives, etc. The density of the fluid is varying over the element and is represented by functional coefficients.
INTEG4	- Subroutine for the calculation of convective matrices with fluid density and the velocity being represented by functional coefficients.
INTEG5	- Subroutine for the calculation of conductive element matrices with the fluid density represented by functional coefficients.
INTEG6	- Subroutine for the calculation of conductive element matrices with the fluid density and the conductivity being represented by functional coefficients. Off diagonal components of the conductivity tensor are assumed to be zero.


INTEG7	- Subroutine for the calculation of convective matrices with the fluid density, conductivity and pressure gradients being represented by functional coefficients. This subroutine computes velocities by Darcy's law.
INTEG8	- Subroutine for the calculation of the element matrices associated with the gravity term in Darcy's law with the fluid density being represented by functional coefficients.
INTEGU	- Subroutine for the calculation of the element matrices associated with the derivatives for unsaturated flux. This version performs point integration at the nodal points.
INTG1X	- Subroutine for calculation at a Gauss point the element matrix resulting from the flow divergence term. Fluid density and permeability are assumed to be constant over the element.   (INTEG1)
INTG4X	- Subroutine for calculation of convective matrix. Fluid density and velocity represented by functional coefficients.
INTG5X	- Subroutine for calculation at a Gauss point the element matrix resulting from the flow divergence term. Fluid density is varying over the element and is represented by functional coefficients - off diagonal components of conductivity tensor assumed to be zero.   (INTEG5)
INTG6X	- Subroutine for calculation at a Gauss point the element matrix resulting from the flow divergence term. Fluid density and permeability are assumed to be varying over the element. Density and permeability represented by functional coefficients - off diagonal components of conductivity tensor assumed to be zero.
INTG7X	- Subroutine for calculation of convective matrix.   Fluid density, conductivity and pressure gradients represented by functional coefficients.
INTG8X	- Subroutine for calculation of element matrix associated with the gravity term in Darcy's law. Fluid density represented by functional coefficients.
INTEG9	- Subroutine for calculation of element matrix associated with the heat transfer function being represented by functional coefficients.
ITGDHS	- Subroutine for calculation of element matrix associated with distributed heat sources being represented by functional coefficients.
INTEGX	- Subroutine to evaluate the coefficients of the element matrix at a Gauss point. This subroutine is evaluating the matrix of the time derivative of pressure for unsaturated conditions The weighting is performed over the whole of the flow domain.

[^0]| HFB2D 2 | - Subroutine for the calculation of basis function values and derivatives for $a \operatorname{2-D}$ parabolic quadri-lateral element. |
| :---: | :---: |
| HFB3D1 | - Subroutine for the calculation of basis function values and derivatives for a $3-D$ hexahedron element. |
| JACOB2 | - Subroutine for the calculation of the Jacobian in 2-D. |
| JACOB3 | - Subroutine for the calculation of the Jacobian in 3-D. |
| HEXA21 | - Subroutine for calculation of 8-21 nodes hexahedral element. |
| PRISM1 | - Subroutine for calculation of basis functions and their derivatives of a prismatic element. |
| JACOB4 | - Subroutine for the calculation of the 2-D Jacobian for an element side belonging to a 3-D hexahedral element. |
| GFLGS1 | - Subroutine to assemble the global matrix system for two phase flow of water and gas sharp interphase between gas and water. |
| HTSMAT | - Subroutines to form simultaneous matrix systems for an element. |
| GFSMAT | - Subroutine to form a simultaneous matrix system for an element. |
| GF SMA1 | - Subroutine to form a simultaneous matrix system for an element. |
| GFSMA2 | - Subroutine to form a simultaneous matrix system for an element. |
| GFSMA 3 | - Subroutine to form a simultaneous matrix system for an element. |
| GFSCHK | - Subroutine to chek schemes for simultatneous matrix formulations. |
| GFSMTR | - Subroutine to form a simultaneous matrix system for an element. |
| GFMINZ | - Subroutine to initialize matrix systems. |
| GFMIZ1 | - Subroutine to initialize matrix systems. |
| GFMIZ2 | - Subroutine to initialize matrix systems. |
| GFMIZ3 | - Subroutine to initialize matrir systems. |
| GFIGA2 | - Computes basis function values at gaussian quadrature points to form integration matrices block elements. |
| GES2M1 | - Compute the element contributions for the global matrix system. |
| GFS2M2 | - Subroutine to rearrange the element matrix system into an effective matrix system. |
| GFS1M2 | - Subroutine to rearrange the element matrix system into an effective matrix system. |
| GFVEI3 | - Subroutine to compute flow velocities in 2-d. |


CHKENT	- Subroutine to check if a given point is located within a pre-specified sub-domain.
BLVEL3	- Block data to initialize coordinate limits.
HFLXNG	- Subroutine to calculate nodal fluxes by averaging the the element contributions around the considered node.
EVDRVG	- Subroutine to evaluate derivatives at nodal points.
BIDRVG	- Block data to initialize local coordinates at nodal points.
HFLXNU	- Subroutine to calculate nodal fluxes averaging the element contributions.
EVDRV1	- Subroutine to evaluate derivatives at nodal points.
BLDRV1	- Block data to initialize local coordinates at nodal points.
ELBLOC	- Subroutine to locate boundary element sides.
ELBPRT	- Subroutine to printout element sides located along the exterior boundary properties.
GFSETP	- Subroutine to store and retrieve pressure arrays.
GFELHC	- Subroutine to input model parameters for parallel plate fractured rock conceptualization.
EIFLU1	- Subroutine for testing with analytical solution data using the Ei-function.
EIFLU2	- Alternative entry for evaluation.
EIGAS1	- Subroutine for testing and comparing numerical and analytical solution data (Ei-function).
EIGAS 3	- Alternative entry to specify gas viscosity function.
EIGAS2	- Alternative entry for evaluation.
2.3 .6	Equation solution
2.3.6.1	Front solution
PRSLVF	- Subroutine for the solution of the pressure equation.
TRSLVF	- Subroutine for the solution of the temperature equations.
CHKFRX	- Subroutine to check the frontwidth before enterring the front solution subroutines.
HFRNF1	- Front solution subroutine - symmetric storage mode.
HFRNF2	- Eront solution subroutine - non-symmetric storage mode.
2.3.6.2	Band solution (currently not used)


PHSLVB	- Subroutine for the solution of the pressure equation using a band-matrix solver.
MDCHKI	- Subroutine for the calculation of the maximum index difference between two nodes of an element.
TMSLVB	- Subroutine for the solution of the temperature equations using a band-matrix solver.
HFLMU1	- Subroutine to organize the element matrices to facilitate the global matrix assembly.
EESLV1	- Linear equation solver - symmetric band storage mode.
BNDSLV	- Linear equation solver - non-symmetric band storage mode.
BNDOUT	- Subroutine to printout a band matrix system.
BNDTRI	- Linear equation solver - non-symmetric band storage mode.
2.3 .7	Heat transfer function
HFWFN1	- Subroutine for the transient heat transfer evaluation at a node.
HFWQUA	- Subroutine for the quasi-steady state heat transfer evaluation at a node.
HFWFUN	Subroutine for the transient heat transfer function administration. This subroutine has the following additional entries:   HFWUPD - For updating the temperature records   HFTFUT - For printout of the temperature records
HFWSET	- Subroutine to initialize the temperature records.
TFPRE1	- Subroutine for simple prediction of the fluid temperature at the next time level.
HFTFUT	- Subroutine to printout records for the temperature history.
2.3.8	Mass and energy balance
HFBLS 1	- Subroutine to output a table of material and energy balances (2-D version).
FEMBL1	- Subroutine to perform mass balance for the fluid (2-D version).
TFEBLI	- Subroutine to perform thermal energy balance for the fluid (2-D version).
TREBLI	- Subroutine to perform thermal energy balance for the rock (2-D version).
HFBLS 3	- Subroutine to output a table of material and energy balances (3-D version).
FFMBL3	- Subroutine to perform mass balance for the fluid (3-D version).
TFEBL3	- Subroutine to perform thermal energy balance for the fluid (3-D version).


TREBL3	- Subroutine to perform thermal energy balance for the rock (3-D version).
NRMVEC	- Subroutine to construct a normal vector to an element boundary.
2.3 .9	Fluid velocities
VELXY1	- Subroutine for the calculation of flow velocities at interior points of elements.
VELXY3	- Subroutine for the calculation of flow velocities at interior points of elements. This version is for saturated-unsaturated flow.
VELSAV	- Subroutine to store flow velocities into arrays for subsequent use. This subroutine has the following additional entry:   VELPLT - to call subroutine *VECPL1* to perform graph ical display of velocity vectors.
VECPLI	- Subroutine to perform graphical display of velocity vectors.
VECPL2	- Subroutine to draw an arrow at a point representing the flow velocity at this point.
HFNFLX	- Subroutine for the calculation of flow velocities at nodal points. Since the velocity field is discontinuous at the nodal points, a mean value is computed by taking the arithmetic mean mean value of all the elements being connected at a node.
HFLXNU	- Subroutine for the calculation of flow velocities at nodal points. Since the velocity field is discontinuous at the nodal points, a mean value is computed by taking the arithmetic mean mean value of all the elements being connected at a node. This version is for saturated-unsaturated flow.
EVDRV1	- Subroutine to evaluate pressure gradient at the nodal points of an element.
2.3 .10	Radioactive heat source
HFSCR1	- Subroutine to input concentrated or distributed heat sources.
HFSRC2	- Subroutine to check, during the element assembly, if an element contains any concentrated heat sources.
WDECAY	- Subroutine to apply the function for the radioactive decay to the initial heat source values.
decay	- Function for the radioactive decay.
HFSRC4	- Subroutine for calculation of implied heat sources due to mass sources.
2.3.11	Rock Stress

HFLGN4 - Subroutine to perform element integration for the displacement equations.

DUL2D1	- Subroutine to perform the evaluation of the various types of integrals associated with the terms in the displacement equations.
DUL2D5	- Such as for *DUL2D1* but for prismatic elements.
DULGAI	- Subroutine to perform sampling at Gauss points.
DUP HM1	- Subroutine to form matrix system for current element.
DUPHM2	- Subroutine to rearrange current element matrix system into an effective matrix system by the application of finite differences to the time derivatives.
HTSMAT	- Subroutine to form a simultaneous matrix system of several sub-systems.
MATRXP	- Subroutine to printout an element matrix system.
DUSLVF	- Subroutine to prepare work arrays for the solution of the displacements using the frontal method.
HFRONU	- Subroutine for front solution of the displacement equations.
INTG1S	- Subroutine to evaulate the integrals associated with the stiffness matrix.
INTG2S	- Subroutine to evaluate the integrals associated with the body force vector.
INTG3S	- Subroutine to evaluate the integrals associated with the pressure and temperature gradients.
DUBLAT	- Auxiliary subroutine to setup boundary conditions for some specific test cases used for the model verification.
BND 2 DU	- Auxiliary subroutine to prescribe the displacements at the bottom resp. top boundaries (2-D flow domain).
BND 3DU	- Auxiliary subroutine to prescribe the displacements at the bottom resp, top boundaries (3-D flow domain).
DUPRT1	- Subroutine to printout a table of the nodal displacements.
2.3 .12	Auxiliary
HFSET1	- Subroutine to initialize most of the work arrays
HFAX1A	- Subroutine for various data transfer between work arrays. This subroutine has the following additional entries: HFAX1B, HFAX2A, HFAX2B, HFAX3A, HFAX3B.
HFWRK1	- Subroutine to update arrays of values from a previous time step. This subroutine has the following additional entries: HFWRK2,HFWRK3.
LMATUT	- Subroutine for the printout of element matrices.
EKU'T	- Complementary subroutine to *IMATUT*.
EKUT1	- Complementary subroutine to *LMATUT*.
EKUT2	- Complementary subroutine to *LMATUT*.
FDPTH2	- Eunction to compute the mean depth of an element.

[^1]| HDRIBC | - Subroutine to set boundary conditions for -Hydrocoin- Example 1, Level 1 called from: GFSBX1. |
| :---: | :---: |
| HDR4BC | - Subroutine to set prescribed boundary pressure for -Hydrocoin- example no 4, Level 1 <br> IORR - control parameter $=0$ zero radius $=1$ prescribed pressure for nodes at $r=R M I N$ <br> $=2$ prescribed pressure for nodes at $r=$ RMAX |
| PHDYN1 | - Subroutine to get dynamic pressure from total pressure. |
| PHDYN2 | - Alternative entry to get total pressure from dynamic pressure. |
| HFRDF1 | - Subroutine to redefine pressure as pressure head ( m 1-1 t-2) or hydraulic head (1) <br> IOP=1: Pressure to be transformed into pressure head <br> $I O P=2$ : Pressure to be transformed into hydraulic head |
| 2.3 .14 | Miscellaneous Ad HoC subroutines |
| IIDGEN | - Subroutine for the generation of a single row of 2-D parabolic elements to be used for $1-D$ analysis. |
| HFSET2 | - Subroutine to set the initial temperature distribution. |
| HFSET3 | - Alternative version of *hfser2*. |
| HFSET4 | - Alternative version of *HFSET2*. |
| UT1DV1 | - Subroutine to output nodal data. |
| UT1DV3 | - Subroutine for the output of nodal data (three-variables). |
| HFPLTIA | - Subroutine for the printout and graphical of nodal data for 1-D analysis. |
| HFMEAN | - Subroutine to integrate the mobility over an element in order to obtain the average mobility called from: HFELG1, HFLGSI. |
| GFINJ1 | - Subroutine to adjust gas and water pressure to a given saturation at injection nodes called from: PRGSEL. |
| GFINJ2 | - Subroutine to set some gas saturation at nodes adjacent to injection nodes called from: GFINJ1. |
| HFNSW5 | - Subroutine to find pressure for given saturation called from: GFINJ1. |
| GFPRT1 | - Subroutine to print out a parameter called from: GFPHS2. |
| GFPRED | - Subroutine to extrapolate solution values for two phase flow of water and gas. |


ADJUST	- Subroutine to modify fluid and gas pressure conditions for "SFR-gas flow problem" called from: GFPHS2.
XPEATI	- Subroutine to change pressure conditions at prescribed nodes   called from: GFSBXI   NDX1 - a node which will be freed if the pressure at node -NDX2- is less than zero (unsaturated)   NDX2 - a node which is located above node -NDX1-
LBPHX	- Subroutine to printout prescribed node pressures.
HFTEST	- Subroutine whose purpose is to printout messages on the use of the control parameter -IOPTST-.
P HMNMX	- Subroutine to set prescribed pressure at vertical or horizontal boundaries.
PHXMIN	- Sets prescribed values at nodes along: $\mathrm{X}=\mathrm{XMIN}, \mathrm{YMIN}<=\mathrm{Y}<=\mathrm{YMAX}$
P HXMAX	- Sets prescribed values at nodes along: $\mathrm{X}=\mathrm{XMAX}, \mathrm{YMIN}<=\mathrm{Y}<=\mathrm{YMAX}$
PHYMIN	- Sets prescribed values at nodes along: XMIN $<=\mathrm{X}<=\mathrm{XMAX}, \mathrm{Y}=\mathrm{YMIN}$
PHYMAX	- Sets prescribed values at nodes along: $\mathrm{XMIN}<=\mathrm{X}<=\mathrm{XMAX}, \mathrm{Y}=\mathrm{YMAX}$
PHXMIN	- Subroutine to set prescribed pressure at the the vertical boundary $x=X M I N, ~ Y M I N<=y<=$ YMAX
PHXMAX	- Subroutine to set prescribed pressure at the the vertical boundary $x=X M A X, ~ Y M I N<=y<=Y M A X$
PHYMIN	- Subroutine to set prescribed pressure at the horizontal boundary XMIN<= $x<=X M A X, y=Y M I N$
PGYMAX	- Subroutine to set prescribed pressure at then horizontal boundary $\mathrm{XMIN}<=\mathrm{x}<=\mathrm{XMAX}, \mathrm{y}=\mathrm{YMAX}$
AMINMX	- Subroutine to find the maximum and minimum values of a one dimensional array.
PHCHK1	- Subroutine to check if solution values lie within the inverval of prescribed values this is just a rough feasibility check of the the results from a boundary value problem.
2.3 .15	Gas migration subroutines
Gas mia	ion--Evaluation of density and dynamic viscosity
GFNPG3	- Subroutine to evaluate "equations of state variables" at nodal points for the fluid and gas.
GFNPG1	- Subroutine to evaluate "equations of state variables" at nodal points for fluid phase.
GFNPG2	- Subroutine to evaluate "equations of state variables" at nodal points for the gas.

```
Gas migration input of boundary conditions and element mesh generation
GFRIN1 - Subroutine to set boundary and initial
 conditions for "SFR-gas flow problem".
GFSET1
HFNDP2
HFELP2
FEMLG1 - Subroutine to generate a l-d element mesh.
SFRIN1 - Subroutine to set boundary and initial
 conditions for "SER-gas flow problem".
SFRUT1 - Subroutine to set printout results.
SERIN2 - Subroutine to set boundary and initial
 conditions for "SFR-gas flow problem"
 called from: PRGSEL
 this version performs the following:
 1) sets all nodes initially nydrostati
 2) reads in one card image from unit iun
 to localize and set cavern B.C.
 3) reads in one card image from unit iun
 to specify the top boundary
SFRUT2
SFRIN3 - Subroutine to set boundary and initial
 conditions for 2-d gas migration problem.
 - Subroutine to set printout results
 - Subroutine to input parameters to setup gas
 migration problem
 Water saturated phase (IPHASE=1),
 Gas saturated phase (IPHASE=2)
 Gas-water interphase (IPHASE=3)
 - Subroutine to input parameters to setup gas
 migration problem.
GELINX
GEIINY
GELSE1 - Subroutine to specify elements that belong to
 water saturated phase (IPHASE=1),
 gas saturated phase (IPHASE=2)
 gas-water interphase (IPHASE=3)
GELIN3
 - Subroutine to generate an element mesh for gas
 migration problem.
GFMINP - Subroutine to superimpose results from a previous
 grid mesh onto a new grid.
GFLINP - Subroutine for linear interpolation.
```

GELIN1	- Subroutine to input parameters to setup gas migration problem   water saturated phase (IPHASE=1),   gas saturated phase (IPHASE=2)   gas-water interphase (IPHASE=3)
GELIN2	- Subroutine to input parameters to setup gas migration problem.
GELINX	- Subroutine to compute grid displacements for migration problem.
GELINY	- Subroutine to compute grid displacements for migration problem after gas break-through.
GELSE1	- Subroutine to specify elements that belong to water saturated phase (IPHASE=1),   gas saturated phase (IPHASE=2)   gas-water interphase (IPHASE=3)
GFMP S3	- Subroutine for evaluation of coefficient vectors for time derivatives of water and gas in connexion with two-phase flow.
GFMPS1	- Subroutine for evaluation of coefficient vectors   for time derivatives of water   in connexion with two-phase flow properties in connexion with two-phase flow.
GFMPS2	- Subroutine for evaluation of coefficient vectors for time derivatives of gas in connexion with two-phase flow.
GASMP 2	- Subroutine for evaluation of the physical properties of the gas.
GFELG1	- Subroutine to assemble the global matrix system for two phase flow of water and gas sharp interphase between gas and liquid.
GFMAUX	- Subroutine to transfer the effective matrix system to a work storage.
GFL2D1	- Subroutine to form integration matrices for a fractured medium block elements. (fluid and gas pressure)
GFLGAW	- Computes basis function values at gaussian quadrature points to form integration matrices block elements.
GFINTG	- Subroutine for calculation of integration matrices for gas-water displacement.
GFLGAB	- Computes basis function values at gaussian quadrature points to form integration matrices block elements.
GFMPB1	- Compute the element contributions for the global matrix system block elements.
GFMPB2	- Subroutine to rearrange the element matrix system into an effective matrix system.
GFELGI	- Subroutine to assemble the interface


LMAT1E	- Subroutine to form element matrix system for 1-d linear element.
GASMP 2	- Subroutine for evaluation of the physical properties of the gas.
ZFCTOR	- Subroutine for evaluation of the correction factor for real gas.
GASMPR	- Block data to set the universal constant $r$ of gases.
VISGA1	- Subroutine for evaluation of the gas viscosity.
VISGA2	- Subroutine for evaluation of the gas viscosity this version applies to hydrogen.
GWIEIM	- Subroutine to assemble interface equations to for a 3 by 3 element matrix system.
DLSCHK	- Subroutine to check displacement length and to change the time step is to small or too high according to given criteria.
Gas mig	ion-mass balance calculation
GMBLAI	- Subroutine to compute mass balance for 1-d gas gas migration.
GMBLA2	- Subroutine to compute mass balance for 1-d gas gas migration.
VELX2D	- Subroutine to evaluate the fluid velocity at a point given as local coordinates physical properties such as mobility (hon), density (dnfn) and porosity (porn) must be evaluated beforehand.
GFSED 1	- Subroutine to store and retrieve gas-water interface parameter data.
GFSED 2	- Entry to store gas-water parameter data for current fracture category in work arrays.
GFSED 3	- Entry to retrieve store gas-water parameter data for current fracture category from work arrays.
GFSED 4	- Subroutine to set nodal permeability.
GFSED 1	- Subroutine to set element permeability.
GFSED5	- Subroutine to set line coordinates for current fracture category.
GESED 6	- Entry to update line coordinates for current fracture category.
GFSED 7	- Entry to initialize line coordinates for all fracture categories.
GFSEDT	- Subroutine to set fracture distribution.
PRROP1	- Subroutine to compute gas migration transport properties.
GFSETP	- Subroutine to store and retrieve pressure arrays.


GFELHC	- Subroutine to input model parameters for parallel plate fractured rock conceptualization.
EIFLU1	- Subroutine for testing with the Ei-function.
EIFLU2	- Alternative entry for evaluation.
EIGAS1	- Subroutine for testing with the Ei-function.
EIGAS3	- Alternative entry to specify gas viscosity function.
EIGAS2	- Alternative entry for evaluation.
Simultaneous solution for gas migration	
GFLGSI	- Subroutine to assemble the global matrix system for two phase flow of water and gas sharp interphase between gas and water.
HTSMAT	- Subroutines to form simultaneous matrix systems for an element.
GFSMAT	- Subroutine to form a simultaneous matrix system for an element.
GFSMA1	- Subroutine to form a simultaneous matrix system for an element.
GFSMA2	- Subroutine to form a simultaneous matrix system for an element.
GFSMA 3	- Subroutine to form a simultaneous matrix system for an element.
GFSCHK	- Subroutine to chek schemes for simultatneous matrix formulations.
GFSMTR	- Subroutine to form a simultaneous matrix system for an element.
GFMINZ	- Subroutine to initialize matrix systems.
GFMIZ1	- Subroutine to initialize matrix systems.
GFMIz2	- Subroutine to initialize matrix systems.
GFMIz3	- Subroutine to initialize matrix systems.
GFLGA2	- computes basis function values at gaussian quadrature points to form integration matrices block elements.
GFS2M1	- compute the element contributions for the global matrix system block elements.
Grs2m2	- Subroutine to rearrange the element matrix system into an effective matrix system.
GFS1M2	- Subroutine to rearrange the element matrix system into an effective matrix system.
GFVEL3	- Subroutine to compute flow velocities in 2-d.
CHKPNT	- Subroutine to check if a given point is located within a pre-specified sub-domain.
BLVEL3	- Block data to initialize coordinate limits.


HFLXNG	- Subroutine to calculate nodal fluxes by averaging the element contributions.
EvDRVG	- Subroutine to evaluate derivatives at nodal points.
BLDRVG	- Block data to initialize local coordinates at nodal points.
2.3 .16	Block fracture system Subroutines
ELREFMX	- Main program to set up connectivity matrices for element sides.
ELFRIX	- Subroutine to return index values associated with the book-keeping of the fracture elements and nodes.
ELFRIN	- Subroutine to input a set of intervals to specify areas of fracture elements.
NODSWP	- Subroutine to reorganize a nodal array according to the re-definition of the element mesh as given by a fractured medium.
ELMFRC	- Subroutine to set up connectivity matrices between the fracture elements and the blocks.
FNODSI	- Subroutine to generate node numbers of fracture elements.
ELNODF	- Subroutine to establish an element connectivity matrix which also includes the fracture elements.
CHKSDE	- Subroutine to check the order of the nodes which define the opposite block side.
BNODS3	- Subroutine to generate node numbers on the block elements and to store these in a connectivity matrix for the blocks. an array relating the block node numbers to the original node numbering is also prepared.
ELFND6	- Subroutine to perform local numbering of adjacent fracture elements.
BNODS2	- Subroutine to perform local numbering of block nodes and adjacent fracture nodes.
BNODS1	- Subroutine to generate node numbers on the block elements and to store these in a connectivity matrix for the blocks. an array relating the block node numbers to the original node numbering is also prepared.
Lesuti	- Subroutine to printout fracture element incidences.
ELbLOC	- Subroutine to locate boundary element sides.
ELBPRT	- Subroutine to printout element sides located along the exterior boundary.
FELTAB	- Subroutine to set up cross reference tables between fracture nodes and block nodes.


OCK	- Subroutine to perform the integration along the block surfaces to account for the exchange of fluid between the blocks and the fractures.
IFRACT	- Subroutine to perform the integration along either side of the fracture element to account for the exchange of fluid between current fracture and its adjoing blocks.
IBLCK1	- Subroutine to perform the integration along the block surfaces to account for the exchange of fluid between the blocks and the fractures.
IFRCT1	- Subroutine to perform the integration along either side of the fracture element to account for the exchange of fluid between current fracture and its adjoing blocks.
PHSRCI	- Subroutine to compute the nodal fluxes at the block nodes and to apply these to the fracture nodes.
PHSRC2	- Subroutine to compute the nodal fluxes at the block nodes and to apply these to the fracture nodes.
Evaluat	Of nodal fluxes for unsaturated flow
HFLXNU	- Subroutine to calculate nodal fluxes averaging the element contributions.
EVDRV1	- Subroutine to evaluate derivatives at nodal points.
BLDRV1	- Block data to initialize local coordinates at nodal points.
2.3 .17	Rock stress
HFLGN4S	- Subroutine to assemble the global matrix system for the solution of the displacement equation.
HFBU2D	- Subroutine to compute element matrices for boundaries with prescribed flux.
DUL2DX	- Subroutine to compute element matrices for the integration along the boundaries with prescribed displacements.
DUX2D1	- Subroutine to perform integration along the element boundaries.
DUTEST	- Subroutine to printout stress-strain tensors.
BLU2DC	- Block data to initialize control parameter for stress integration   IOPDUX=0 integration matrices to be computed IOPDUX=1 surface tractions to be computed.
HFsu3d	- Subroutine to compute element matrices for boundaries with prescribed flux.
DUL3DX	- Subroutine to compute element matrices for the integration along the boundaries with prescribed displacements.


DUX3D1	- Subroutine to perform integration along element boundaries.
DUTELX	- Subroutine to compute the coefficients of an element matrix at a gauss point for an element boundary subject to prescribed flux.
BLU3DC	- Block data to initialize control parameter for stress integration   IOPDUX=0 integration matrices to be computed IOPDUX=1 surface tractions to be computed.
HOOKE 1	- Subroutines for elasticity computations.
HOOKE1	- Subroutine to setup elasticity matrices.
Stres2	- Subroutine to determine the stress tensor.
STRAI2	- Subroutine to determine the strain tensor.
STRESS	- Subroutine to evaluate the stress tensor.
STRAIN	- Subroutine to evaluate the strain tensor.
estrai	- Subroutine to determine the strain tensor.
ESTRAJ	- Subroutine to setup the strain tensor in vector form.
ESTRAK	- Subroutine to setup the strain tensor in matrix form.
PSTR2D	- Subroutine to determine the principal stresses.
DUSLVF	- Subroutine to prepare work arrays for the solution* of the displacements using the frontal method. (uses symmetric frontal solver)
DUAXLA	- Subroutine to prepare work arrays for the front solution of the rock displacements.
DULOC1	- Subroutines to set boundary conditions for the the calculation of the displacements.
Printout	f rock stress data
HFUTV2	- Subroutines to printout results.
SOLVU2	- Subroutine to output solution values.
NDPRU2	- Subroutine for nodal printout this version prints out concentrated heat sources and selected nodal values   - two-d version -
NDPRUX	- Alternative entry to specify functions for material properties.
FUNGX FUNGY SIGMXX	- Dummy functions for analytical results


NDPRU3	- Subroutine for nodal printout this version prints out concentrated heat sources and selected nodal values   - three-d version -
DUPRT1	- Subroutine to printout the nodal displacements.
DUPRT2	- Subroutine to printout the nodal displacements.
MATRXP	- Subroutine to printout an element matrix system.

Basis function subroutines

HFLPAC - Subroutine for the evaluation of the basis functions and their derivatives for a given elelemt type.

HFBSID - Subroutines for basis functions.
HFB1D2 - Calculates basis function values and derivatives.
HFB1DA - Alternative entry to compute only the basis functions.

JACOB1 - Computes the Jacobian in 1-d.
HFBS2D - Subroutines for basis functions.
HFB2DF - Subroutines for basis functions and their derivatives for a $2-d$ four nodes quadri-lateral element.
HFB2DG - Alternative entry for basis functions.
HFB2D2 - Calculates basis function values and derivatives.
HFB2DA - Alternative entry to compute only the basis functions.

JACOB2 - Computes the Jacobian in 2-d.
HFBS3D - Subroutines for basis functions.
HFB3D1 - Calculates basis function values and derivatives.
HFB3DA - Alternative entry to compute only the basis functions.
JACOB3 - Computes the Jacobian in 3-d.
JACB12 - Subroutines to compute the jacobian associated with 1-d fracture elements in a 3-d domain.
JACB11 - Subroutines to compute the jacobian associated with 1 -d fracture elements in a 3-d domain.
JACB23X - Subroutines to compute the jacobian associated with 3-d fracture elements.
JACB22X - Subroutines to compute the jacobian associated with 3-d fracture elements.

COORDT - Subroutine to apply a linear coordinate transformation.
HEXA21 - Three-d hexahedral element (8 - 21 nodes).
HEX21X - Subroutine to find the basis functions for a three-d hexahedral element (8-21 nodes).

NRMVEC	- Subroutine to construct a normal vector to an element surface.
vcross	- Subroutine to perform vector product the output vector is normalized.
HFAREA	- Subroutine to construct a normal vector to a surface.
vecmul	- Subroutine to perform the cross product of two vectors.
VECNRM	- Subroutine to normalize a given vector.
Mass and energy balance calculation	
GFBL2D	- Subroutine for mass and energy balances in 2-d.
GFMBL1	- Subroutine to perform material balance for the fluid flow equation.
GFBLS 2	- Subroutine to output a table of material and energy balances.
HFBL 2 D	- Subroutine for mass and energy balances in 2-d.
HFBLS 2	- Subroutine to output a table of material and energy balances.
HFBL3D	- Subroutines for mass and energy balances in 3-d.
IPRCHK	- Function to set printout control option.

Boundary flux subroutines

HFBF2D - Subroutine to compute element matrices for boundaries with prescribed flux.
HFLI2D - Subroutine to compute element integration for elements with prescribed flux.

HFLX2D - Subroutine to perform integration of fluxes fluid flow equation.

HFBF3D - Subroutine to compute element matrices for boundaries with prescribed flux.

HFII3D - Subroutine to compute element matrices for boundaries with prescribed flux.
INTFLX - Subroutine to compute the coefficients of an element matrix at a Gauss point for an element boundary subject to prescribed flux.

HFLX3D - Subroutine to perform integration of fluxes fluid flow equation.

```
2.4 COMMON AREAS
The program contains the following common blocks:
 COMMON/AMBLCK/ AMBLCK}(16,16
 COMMON/AMBMNG/ AM (21,21,5),BM (21,5)
 COMMON/ANISOT/ FHCX,FHCY,FHCZ
 COMMON/BOTNDS/ JBTN(125),NBTNMX,NBTN
 COMMON/CJACOB/ AJ (3,3)
 COMMON/CNTRL1/ ICP1(40)
 COMMON/CNTRL2/ MXSTEP,MXITER,DTFAC,PHERTL,TFERTL,TRERTL
 COMMON/CNTRL3/ NSTEP,TIME,DT,ITER,PHERMX,TFERMX,TRERMX
 COMMON/CNTRL4/ PHMXDT,TFMXDT,TRMXDT
 COMMON/CNTRL5/ NPSTPS,NTSTPS
 COMMON/COEFF1/ POR,CF.,CR,CTF,DF,DR.
 COMMON/COEFF2/ SCF,SCR,HT
 COMMON/COEFE3/ HC (3,3),TCF(3,3),TCR (3,3)
 COMMON/COEFF4/ GRAVTY(3)
 COMMON/COEFFS/ TDIF,RCHAR,CAREA,WSHF,CDR,NSUM,EXTOL
 COMMON/COEFF6/ C11,C12,C21,C31,C32
 COMMON/COEFF8/ CPOR,POR1,CPERM,PERM1,FRPERM
 COMMON/COMFRC/ LERACS(25),MXLFRC,NLFRC
 COMMON/DUFLUX/ DFIX (99,4,3),JLDLU(99),JUSIDE (99),MXNDLX,NDLX,NDEL
 COMMON/DTMAX1/ DTMAX
 COMMON/ELCTY1/ EM,PR,ALFA,BETA
 COMMON/EKMFKM/ EKM(21,21,5),FKM{21,5)
 COMMON/ELTYPE/ LTYPE
 COMMON/ELEMNO/ IEL
 COMMON/EQSOLV/ ICPSLV(10)
 COMMON/ERRMXN/ MXEDTN(3),MXEIIN(3),MXE2IN(3)
 COMMON/FECOM1/ MXNE,NE,MXNP,NP
 COMMON/FECOM2/ MXBAND,MBAND,MXNN,NN
 COMMON/FECOM4/ NNODE,NDOF,NER,NDIM
 COMMON/FECOM6/ LNTYP (3,12)
 COMMON/FECOM7/ MXNEB,NEB,MXNBN,NBN,MXNFEL,NFEL,MXNFN,NFN
 COMMON/FRICO1/ QFRI(15),PFRI(15),XFRI(125, 15),
1 CFRI(15)
 COMMON/FRIC03/ MXFRI,NFRI
 COMMON/FRIC04/ RPERM(15),XLCAVI(15),FRWIDI(15),
1 QFACI(15)
 COMMON/FTCFR / FTCFR
 COMMON/FUNGA1/ TLOAD,VALFA,A,A2G,AK,IOR2D
 COMMON/FUNGA3/ IOPDUL,IBODY
 COMMON/FUNGA4/ IOPBC
 COMMON/FUNLHC/ FUNLHC
 COMMON/GAS3 / SLIR(3),SGR(3)
 COMMON/GAUBEN/ PBFN(21,27),PDFN(3,21,27),WTGT (27),NGT
 COMMON/GAUSS1/ XGI (4),WGI (4),NG1
 COMMON/GAUSS2/ XG2(4),YG2 (4),WG2 (4),NG2
 COMMON/GAUSSW/ XG(4),YG (4),ZG(4),WGX (4),WGY (4),WGZ (4),NGX,NGY,NGZ
 COMMON/GFELX1/ NELG,NELG1,NELG2,NELW,NELW1,NELW2,
I
 NPG,NPG1,NPG2,NPW,NPW1,NPW2,
```

```
2
 NELI,NELGWI,NPGWI1,NPGWI2
COMMON/GFELX2/ XLGAS, XLWAT,XLGWI,XLTOT,DLSG
COMMON/GFELX4/QMG1,QMG2,QMW1,QMW2
COMMON/GRVTY1/GRVTY1(3)
COMMON/GWMODE/ MODE
COMMON/HEATMS / NHMS1,NHMS2
COMMON/HFMEB1/ FSUM(5),WFLXLB,TFLXT1,TFLXT2,TFLXT3,WSUM
COMMON/HFMEB2/ THEAT,TNRG
COMMON/HFMEB3/ THEATR,TENRGR
COMMON/HFMEB4/ TDHS,TCHS
COMMON/HFPLOT/ IPLOT
COMMON/HFREF1/ PREF,TREF,HCREF,PRMREF, POREF,DNFREF,VSCREF
COMMON/HFREF2/ GEOGRD,SLOPE,XREF,YREF, ZREF
COMMON/HFREF3/ A1,AL1,A2,AL2
COMMON/HFREF4/ CPR,CPRM
COMMON/HFWIUN/ IUNIT1,IUNIT2
COMMON/HGCUSH/ HG,HS
COMMON/HSCOM1/ HS (75), 工HS (75,3),NHS
COMMON/HSCOM2/ WHS (21),NDS (21),NS
COMMON/IAXSYM/ IAXSYM
COMMON/ICPIOT/ ICPIOT(10)
COMMON/ICRAY / ICRAY
COMMON/IDISCR/ IDISCR
COMMON/IDNFMS/ IDNFMS
COMMON/IELREF/ IELREF(375)
COMMON/IFMODE/ IFMODE,IFRCHK,IFRM
COMMON/IFNPG1/ IFNPG1
COMMON/IGBRK1/ IGBRK,NSTBRK
COMMON/IMDPTH/ IMDPTH
COMMON/IMSTRE/ IMSTRE
COMMON/IMTYPE/ IMTYPE
COMMON/INEWTN/ INEWTN
COMMON/INPTEX/ INPTEX
COMMON/IOPBC1/ IOPBC1(10)
COMMON/IOPELX/ IOPFLX
COMMON/IOPHC / IOPHC
COMMON/IOPINS/ IOPINS
COMMON/IOPOR / IOPOR
COMMON/IOPSLV/ IOPSLV
COMMON/IOPTST/ IOPTST
COMMON/IPRISM/ IPRISM
COMMON/ITERX / ITERX
COMMON/ITRPRT/ ITRPRT
COMMON/IUERON/ IU1,IU2,IU3,IU4
COMMON/IUNITS/ IUNIT(IO)
COMMON/IUNSAT/ IUNSAT
COMMON/INUN1O/ INUN(10)
COMMON/IWAVG / IWAVG
COMMON/IWTBL / IWTBL
COMMON/JBRRMI/ JBNAM,JBNR
COMMON/JBRRM2/ IYR,MON,IDY,IHR,IMIN,ISEC
COMMON/JNDS2D/ JNDS2D (3,4),NCHK2D
COMMON/JNDS3D/ UNDS3D (4,6),NCHK3D,JSAP (8)
```

COMMON/LADHOC/ CGWI6X,CGWI8X,LADHOC,LGWI
COMMON/LBFLUX/ BFLX $(375,3)$, JLFLX $(375)$, JLSIDE (375), MXFLX, NFLX, NCEL
COMMON/LBSEEP/ LBSEEP(100), MXSEEE,NSEEP
COMMON/LHEX21/ IEL21
COMMON/LSFLAG/ LSELAG
COMMON/MATMD1/ IMATM,IPORF,IPERF
COMMON/MATRX1/ AM1 $(21,21,3,3), \operatorname{VEC1}(21,3)$
COMMON/MATRX2/ AM2 $(21,21,3,3)$, VEC $(21,3)$
COMMON/MATRX3/ AA $(42,42), C C(42)$

```
COMMON/MFRONX/ MFRON
COMMON/MISCHK/ MISCHK
COMMON/MODPRT/ MODPRT,MPRT
COMMON/MOST10/ LIFSIDE (375,6),\operatorname{LCON}(375,6,2),\operatorname{LECONX}(375,6)
COMMON/MTRXI / AM1 (8,8,3,3),VEC1 (8,3)
COMMON/MTRX2 / AM2 (8,8,3,3),VEC2 (8,3)
COMMON/MTRX3 / AA (24,24),CC (24)
COMMON/MXLBHH/ MXLBHH
COMMON/MXNDE / MXNDE
COMMON/MXNSTP/ MXNSTP
COMMON/MXNPEL/ MX21
COMMON/NETOT / NETOT
COMMON/NEX / NEX
COMMON/NODPRT/ NDSPRT(100),MXNPRT,NPRT
COMMON/NREADT/ NREADT
COMMON/NRUN / NRUN
COMMON/PBASIS/ P(21)
COMMON/PHNTFN/ PHN(21),TFN(21),DNFN(21)
COMMON/PHSINK/ WPSINK (75), LPSINK (75),NPSINK (75),MXNMS,NMS
COMMON/PLOTTR/ IOREN,ICLOS
COMMON/RLOTXY/ XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
COMMON/PORNDS/ PORN(21)
COMMON/RUNMAX/ RUNMAX
COMMON/SPRIME/ SPRIME,ISPRIM
COMMON/TIME1 / TIME1
COMMON/TITLE / TEX(20)
COMMON/TITLE2/ TEX2(20)
COMMON/TITLE3/ TEX3(20)
COMMON/TOPNDS/ JTPN(125),NTPNMX,NTPN
COMMON/TWORH5/ IPSINK
COMMON/TWORH3/ IPHASE
COMMON/UNSAMG/ THXG (41,3),HCRG(41,3), NTHMXG (3)
COMMON/UNSAM1/ THX1 (20,3), PHC (20,3),NTHX1
COMMON/UNSAM2/ THX2(20,3), HCRX (20,3),NTHX2
COMMON/UNSAM3/ THX3 (20,3),DSWPC (20,3),NTHX3
COMMON/UNSAM4/ MXIMAX,NXIMAT
COMMON/UNSAMS/ IPRUNS
COMMON/UNSAM6/ WTBL,WLV1,WLV2
COMMON/UNSAM7/ XWTBL (125),YWTBL (125),MXWTBL,NWTBL
COMMON/UNSATN/ SWN(21),DSWN(21)
COMMON/UNSTEX/ UNSLBL (15,3)
```

```
 COMMON/VELARY/ XCE(612),YCE(612),ZCE(612),VXE(612),VYE(612),
I
VZE(612),NL
COMMON/VELMAX/ VELMAX
COMMON/WEIGHT/ W11,W12,W21,W22,W23
COMMON/XIETZE/ XI2(8),ET2(8),XI3(8),ET3 (8), ZE3(8)
COMMON/XIT4 / XI4(21),ET4(21),ZE4(21)
COMMON/XYZHCN/ XYZ (3,21),HCN (3,21)
COMMON/XZERO / XF1,XF2,YF1,YF2,ZF1,ZF2
```

A
A1

A2

AA $(42,42)$
AJ $(3,3)$
ALFA
ALI

AL2

A2G
AK
AM $(21,21,5)$

B1
B2 21,21 )
$33(21,21)$
BETA
$\operatorname{BFLX}(375,3)$
BM $(21,5)$
C1. 1
C12
C21
C31
C32
CAREA

CC(42)

CDR
$C F$.

AM(21,21,5) See descriptions of the enent
AM1 $(21,21,5)$ - See descriptions of the element matrix systems.
AM2 $(8,8,3,3)$ - See descriptions of the element matrix systems.
AMBLCK $(16,16)$ - Matrix resulting from surface integration fluid flow transfer along block-fracture surfaces.

- Internal parameter computed by the program.
- Coefficient in the function for the radioactive decay.
- Coefficient in the function for the radioactive decay.
- Element matrix.
- Matrix of Jacobian coefficients.
- Coefficient of thermal volume expansion of rock.
- Coefficient in the function for the radioactive decay.
- Coefficient in the function for the radioactive decay.
- Internal parameter.
- Internal parameter.
- See descriptions of the element matrix systems. Not used.
- See descriptions of the element matrix systems.
- See descriptions of the element matrix systems.
- Elasticity parameter related to the thermal volume expansion of the rock and Poisson's ration (see Nomenclature).
- Matrix for prescribed boundary flux.
- See descriptions of the element matrix systems.
- Auxiliary variable, currently: C11=CF.+CR.
- Auxiliary variable, currently: C12 = CTF.
- Auxiliary variable, currently: C21 = SCF.
- Auxiliary variable, currently: C12 = CTF.
- Auxiliary variable, currently: C12 = CTF.
- Coefficient of the contact area used in the heat transfer function.
- Array for right-hand side of the system of element of element equations.
- Coefficient used in the heat transfer function whose value depends on the model approach considered (see Thunvik and Braester, 1980).
- Fluid Compressibility.

CFRI (15)	- Array for total number of fractures of the respective fracture category.
CPERM	- Coefficient in permeability function (for depth variation of the permeability).
CPOR	- Coefficient in porosity function.
CR	- Rock compressibility.
CTE	- Coefficient of thermal volume expansion of the fluid.
DF	- Fluid density.
DISG	- Current gas-water displacement length.
DNFREF	- Reference value of fluid density.
DNFN(21)	- Array for fluid densities at nodal points of current element.
DNFREF	- Reference value of the fluid density.
DP	- Difference in pressure between current and previous iteration.
DR.	- Rock density.
DSWP $(20,3)$	- Matrix for derivatives of saturation versus pressure for various degree of saturation. This matrix is associated with the matrix THX3 which contains the corresponding saturation values.
DSWN (21)	- Array for nodal values of the derivatives of saturation versus pressure for current element.
DT	- Time increment.
DTFAC	- Factor by which the time increment is multiplied during the execution.
DTMAX	- Maximum permitted time increment.
DX	- Plot scale in the x -direction ( $D \mathrm{C}=(\mathrm{XMAX}-\mathrm{XMIN}$ )/SX
DY	- Plot scale in the $y$-direction (DY= (YMAX-YMIN)/SY
$\operatorname{EKM}(21,21,5)$	- See descriptions of the element matrix systems.
EM	- Young's modulus.
ET2	- Array for local y-coordinates of the nodal points of a 2-D parabolic element.
ET3	- Array for local $y$-coordinates of the nodal points of a 3-D hexahedral (8-nodes) element.
ET4	- Array for local y-coordinates of the nodal points of a 3-D herahedral (8-21 nodes) element.
EXTOL	- Tolerance value to be used as the criterion to stop summation of terms in infinite series at the heat transfer function evaluation $-30$   Default: EXTOL $=10$
$\operatorname{EDLX}(99,4,3)$	- Matrix for prescribed displacements at element sides along the boundary.


FHCX	- Factor for the permeability component in the $x$ direction.
FHCY	- Factor for the permeability component in the $y^{-}$ direction.
FHCZ	- Factor for the permeability component in the $z$ direction.
$\operatorname{FKM}(21,5)$	- See descriptions of the element matrix systems. Default: PERM1=PRMREF
FTCFR	- Coefficient for linear fluid transfer function for blocks and fractures.
FRPERM	- Coefficient to specify permeability of a fracture zone versus the surrounding rock. The permeability of the fracture zone is obtained by multiplying FRPERM by the rock permeability.   Default: FRPERM=1.0
FRWIDI (15)	- Array for equivalent fracture with for tube diameters) for each fracture category.
FSUM (5)	- Array for contributions from the time derivatives to the total mass- and energy balance calculation.
GEOGRD	- Geothermal gradient
GRAVTY (3)	- Vector for the acceleration of gravity.
GRVTY1 (3)	- Vector for the acceleration of gravity.
$\mathrm{HC}(3,3)$	- Matrix for the permeability tensor.
$\mathrm{HCN}(3,21)$	- Matrix for the permeability components at the nodal points of current element.
HCREF	- Reference value of the hydraulic conductivity.
HCRF (41.3)	- Matrix to hold the curves for saturation versus relative permeability of the fluid for 3 different materials.
$\operatorname{HCRG}(41,3)$	- Matrix to hold relative gas permeability curves for three different materials.
$\operatorname{HCRX}(20,3)$	- Matrix for the relative permeability at various degree of saturation. This matrix is input and is associated with THX2, which contains the corresponding saturation values.
HG	- Thickness of gas cushion (in gas migration calculation).
HS	- Depth to see bottom (in gas migration calculation)
HS (75)	- Array for the effects of concentrated heat sources.
HT	- Heat transfer coefficient.
IAXSYM	- Indicates if the flow domain is axi-symmetric.
IBLNOD(375	- Connectivity matrix for block elements.
IBODY	- Body force control parameter.
ICLOS	- Indicates if the plotter has been closed.


ICP1(40)	- Array for miscellaneous control parameters.
ICPLOT (10)	- Array for plot control parameters.
$\operatorname{ICPSLV}(10)$	- Array for control parameters associated with the solution variables.
ICRAY	- Control parameter for Cray runs.
IDISCR	- Control parameter for discrete modelling.
IDNFMS	- An integer to indicate if density is to be multiplied by volumetric sources to get   $=0$ mass source input (no action)   $=1$ volumetric input source to be multiplied with density (currently this is applied only to the gas phase).
IDTRED	- See description of PHMXTL.
IDY	- Day of execution.
IEL	- Current element number.
IEL2I	- Control parameter to specify type of hexahedral element used (see input description section 3.2.1).
IELREF (375)	- Auxiliary array used during the establishment to keep block sides associated with fracture element.
IFRM	- Read/write control parameter in front solver.
IFLNOD (450,	- Connectivity matrix for the fracture elements.
IFNPG1	- An integer to indicate if fluid density and viscosity needs to be evaluated only once $=0$ evaluation at each time step $=1$ evaluation only at first time step.
IFMODE	```- Front solution control parameter = 0 Direct elimination of element matrix systems. = I Element matrices to be written to disk file.```
IGBRK	- Control parameter for gas break through.
IfR	- Hour of execution.
IHS ( 75,3 )	- Matrix used for the concentrated heat sources. IHS (IHS, 1) $=$ <lock node number of element containing the heat source>   IHS (IHS, 2) $=$ <element containing the heat source> IHS (IHS, 3) $=$ <nodal number>   IHS is number of heat source.
IMATM	- An integer variable that should be set equal   to one if node oriented material properties are   to be considered   =0 Element oriented properties   $=1$ Node oriented properties.
IMSTRE	- Element matrix control parameter   $=0$ Element matrix and the R.H.S to be written on separate records   $=1$ Element matrix and the R.H.S to be written on the same record.


IMIN	- Minute of execution.
IMDPTH	- Indicates of the permeability of an element is to be related to the mean depth of the element.
IMTYPE	- Control parameter to indicate type of format used for nodal coordinates function.
INEWTN	- Indicates of Newton-Raphson iteration technique is to be used.
INPTEX	- An integer used to indicate whether each input group should be proceeded with a text record INPTEX=0 No text record to be input   INPTEX=1 each input group to be proceeded by a text record.
INUN (1)	- Logical unit number for input to HFINPT, hFNDIN and HFELIN   Default: $\operatorname{INUN}(1)=5$
INUN (2)	- Logical unit number for input to subroutines   HFSRC1, HFBCX1 and SELNDS   Default: $\operatorname{INUN}(2)=5$
INUN (3)	- Logical unit number for data from a previous execution to be read in. This is to continue the execution using solution values from the most recent time step in a previous execution as initial values. This is carried out by subroutines HFNDUV and HFNDU1. If no data are to be input in this way, then set:   $\operatorname{INUN}(3)=0$
INUN (4)	- Output unit used for storage of of input to subroutines HFINPT, HFNDIN and HFELIN Default: $\operatorname{INUN}(4)=21$
INUN (5)	- Output unit for solution values of pressure and temperatures at each time step. This is carried out by subroutine HFSAVD. This output may later be used as input using INUN(3)   Default: $\operatorname{INUN}(5)=22$
INUN (6)	- Input unit for unsaturated data.   Default: INUN (6) $=55$
INUN (7)	- Input unit for stress data.   Default: INUN(7)=56
INUN (8)	- Input unit for element mesh.   Default: $\operatorname{INUN}(8)=5$
INUN (9)	- Input unit for drain data. Default: $\operatorname{INUN}(9)=57$
INUN9	- Unit number for printout of gas displacement.
INUN(10)	- Array for logical unit numbers of the input files.


IOPBCI	- Array for control option of B.C. settings   IORBCI (3) $=1$ set $B . C$. on bottom boundary   IOPBC1 (4) $=1$ set $B . C$. on top boundary.
IOPG	- Gravity control parameter   IOPG=0 no gravity   IOPG=1 gravity.
IOPSLV	- Solution parameter to specify the set of equations to be solved   $=0$ Pressure, Fluid and Rock temperatures to be solved for   $=1$ Pressure to be solved for   $=2$ Fluid temperature to be solved for   $=3$ Pressure and fluid temperature to be solved for   $=4$ Rock temperature to be solved for   $=5$ Fluid and rock temperatures to be solved for   $=6$ Displacements to be solved for   $=7$ Two-phase flow.
IOPBC	- Control parameter for boundary conditions in stress calculations.
IOPDUL	- Control parameter for stress calculation.
IOPHC	- An integer variable which should be set equal one if node permeabilities are to be considered.
IOPOR	- An integer variable which should be set equal one if node porosities are to be considered.
IOPEN	- Indicates if the plotter has been opened.
IOPFLX	- Indicates if prescribed boundary flux conditions are to be applied, or if the current purpose is to calculate the fluxes through an element boundary.
IOPHC	- Indicates of permeability is to be associated with the nodal points rather that with the element volumes.
IOPINS	- Control parameter to suppress input of parameter data and initialization.
IOPTST	- Control parameter for special parameter settings.
IOP 2D	- Control parameter for solution of validation example of stress equations   $=0$ Ideal stress   $=1$ Plane stress   $=2$ Plain strain.
IPHASE	```- Phase control parameter. =1 gas =2 water```


IPSINK	- Control parameter to specify to which phase point sources are to be applied. $\begin{aligned} & =0 \\ & =1 \\ & =2 \end{aligned}$
IPRCHK	- Front solution printout parameter.
IPERF	- An integer variable which should be set equal a positive value if a function for permeability is to be called for each element.
IPORF	- An integer variable which should be set equal a positive value if a function for porosity is to be called for each element.
IPLOT	- Indicates of the solution values are to be graphically displayed.
IPRISM	- Indicates if current element is a prismatic element.
IP RMX	- Set control parameter for printout of nodes with maximum change in values between time steps.
IPRUNS	- Indicates if the material properties associated with unsaturated conditions are to be printed out.
ISPRIM	- Control parameter for usage of SPRIME.
ISEC	- Second of execution.
ITER	- Number of iterations in current time step.
ITERX	- Iteration counter used for the solution of the fluid pressure.
ITRPRT	- Control parameter to produce"trace" printout from fluid flow integration subroutines.
IUNSAT	- Control parameter for unsaturated flow. A value than zero indicates that unsaturated flow should be considered.
IUNSAT	- An integer that must be set equal to one when unsaturated flow is to be considered.
IUNIT (10)	- Array for logical unit numbers of the intermediate data files.
IUNIT1	- Unit number of file for temperature history data used for the evaluation of the transient heat transfer function.
IUNIT2	- Unit number of file for temperature history data used for the evaluation of the transient heat transfer function.
IU1	- Unit number of file containing element matrix systems to be processed by the front solution subroutine.
IU2	- Unit number of file containing the right hand sides of the element matrix systems to be processed by the front solution subroutine.
IU3	- Unit number of work file for the front solution subroutine.


IU4	- Unit number of work file for the front solution subroutine.
IWTBL	- An integer to indicate if the position of the water table is to be located in an unsaturatedsaturated flow problem (only for NDIM=2). IWTBL $>0$ water table to be located and printed.
IWAVG	- Control parameter for weighted average calculation for calculation of material properties:   IWAVG $=0$ No weighting to be performed.   $=1$ Two most recent values to be used.   $=2$ Three most recent values to be used.   $=3$ Most recent values and previous solution values to be used.   $=4$ Most recent values plus iteration values solution values to be used.
IYR	- Year of execution.
JBN (500)	- Array for block nodes corresponding node numbers in the original number system.
JBNAM	- Job identification name. (CHARACTER*8)
JBNR	- Job number (CHARACTER*4)
JBTN	- Array
JFN (500)	- Array for fracture nodes containing the node numbers in the original system.
JLDLU (99)	- Array for element numbers associated with prescribed displacements.
JLFLX(375)	- Array for element numbers subject to prescribed boundary flux conditions.
JLSIDE	- Array for the element sides of the elements subject to prescribed flux conditions.
JNDS2D (3, 4)	- Matrix for element side definitions of 2-D.
$\operatorname{JNS3D}(4,6)$	- Matrix for element side definitions of $3-D$ (8-node hexahedral) element.
JSAP (8)	- Auxiliary array specified in block data BLIELX to temporarily redefine the nodal numbering of an element type (currently not used).
JTPN	- Array for node numbers at the top boundary.
JUSIDE (99)	- Array for element side number of elements associated with the prescribed boundary displacements.
LADHOC	- Logical control parameter which if set equal to will cause all time derivatives being held in the coefficient vectors to be set equal to zero.
LBSEEP (100)	- Array for possible seepage nodes.
LCON (MXNE,	IDES, 2) - Work matrix where MXNE is the maximum permitted number of elements NSIDES is the maximum permitted number of sides


	per element   LCON (IEL, ISIDE, 1) = <adjacent element>   LCON (IEL, ISIDE, 2) = <adjacent element side>
LECONX	- Matrix to relate block element sides to fracture elements   LECONX (IEL,ISIDE) = <fracture element>   IEL is current block element.   ISIDE is current side of the block element.
LFRACS (25)	- Array for element numbers for fracture elements.
LFSIDE (375,	- Work matrix used to specify fracture elements associated with the sides of the respective element   LFSIDE (IEL, ISIDE) = <fracture element number> IEL is current element   ISIDE is specifying a side of current element.
LGWI	- Logical control parameter (currently not used)
$\operatorname{LNFEL}(450,2)$	- Work matrix for the fracture elements   LNEEL ( IFEL, 1) = <reference element number>   LNFEL ( IFEL, 2) $=$ <side of the reference element being associated with current fracture element IFEL>.
$\operatorname{LNTYP}(3,12)$	- Matrix for specification of the various types of elements implemented.
LPSINK(75)	- Array for element numbers associated with concentrated mass sources.
LSFLAG	- Internal control parameter which is set true if current element is of the same type as the previous element.
LTYPE	- Type code of current element.
MBAND	- Current band-width.
MFRON	- Current front width.
MISCHK	- General printout control parameter.
MON	- Month of execution.
MODE	- Control parameters to indicate that fracture network generation is to be performed.
MODPRT	- Printout control parameter to suppress the printout of intermediate time steps, e.g.   MODPRT=1 gives printout for every time step. MODRRT=2 gives printout for time steps $1,3,5,7, \ldots$   MODPRT=3 gives printout for time steps $1,4,7,10, \ldots$ etc.   Default: MODPRT=1
MPRT	- Same as MODRRT (currently used to replace MODRRT in subroutine GFSBXI).
NWTBL MXBAND	- Current number of points for the water table.   - Maximum permitted band-width.


MXEDTN (3)	- Array containing the nodes at which the maximum change from the previous time step has occurred for pressure, fluid and rock temperatures.
MXE1IN (3)	- Array containing the nodes at which the maximum iteration errors have occurred for pressure, fluid and rock temperatures (most recent iteration).
MXE2IN (3)	- Array containing the nodes at which the maximum iteration errors have occurred for pressure, fluid and rock temperatures (previous iteration).
MXFRI	- Maximum permitted number of categories that may be treated with regard to the dimensions of work array QFRI, PFRI, XFRI, CFRI, RPERM, XLCAVI, FRWDI and QFACI.
MX21	- Maximum permitted number of nodes per element in the element connectivity matrix.
MXIMAX	- Maximum permitted number of material properties for unsaturated flow.
MXITER	- Maximum permitted number of iterations with a time step.
MXFLX	- Maximum permitted number of element sides subject to prescribed boundary flux.
MXLBHH	- Specifies the sizes of the work arrays $H H$ and LB. The value of this parameter should not be less than $\mathrm{NP} * \mathrm{NDOF}$.
MXXLFRC	- Maximum permitted number of element numbers to be input to the array LFRACS.
MXNDE	- Maximum number if nodes that current element type may take.
MXNMS	- Maximum permitted number of concentrated mass sources.
MXNE	- Maximum permitted number of elements.
MXNN	- Maximum permitted number of unknowns in the global matrix system.
MXNMS	- Maximum permitted number of point (fluid) sources).
MXNE	- Maximum permitted number of nodal points.
MXNDLX	- Maximum permitted number of element sides that could be specified using the arrays: DFLX, JLDLU and JUSIDE.
MXNPRT	- Maximum permitted number of nodes to be selected for printout.
MXNSTE	- Maximum permitted number of time step for which the temperature history will be updated.
MXSEEP	- Maximum permitted number of possible seepage nodes.
MXStep	- Maximum permitted number of time steps.
MXWTBL	- Maximum permitted number of points for water table.
MXNEB	- Maximum permitted number of block elements.
MXNBN	- Maximum permitted number of block nodes


MXNFEL	- Maximum permitted number of fracture elements.
MXNFN	- Maximum permitted number of fracture nodes.
NBN	- Number of block nodes.
NBTN	- Number of nodes along the bottom boundary selected for specification of boundary conditions, etc.
NBTNMX	- Maximum permitted nodes along the bottom boundary that may be selected and stored in the array JBTN.
NCEL	- Element counter for boundary flux elements.
NCHK3D	- Number of element sides of 3-D elements.
NCHK2D	- Number of element sides of 2-D elements.
NCEL	- Auxiliary element counter used during element assembly of prescribed boundary fluxes.
NDSPRT (100)	- Array for node numbers to be printout.
NDLX	- Current number of element sides subject to prescribed boundary displacements.
NDEL	- Auxiliary element counter used during element assembly of prescribed boundary displacements.
NDIM	- Number of spatial dimensions.
NDOF	- Number of degrees of freedom per node.
NDS (21)	- Array for global node numbers associated with current element.
NE	- Total number of elements.
NEK	- Number of unknowns in a element matrix system.
NEX	- Element counter.
NFIX	- Number of element sides subject to prescribed flux.
NERI	- Number of fracture categories.
NEB	- Number of block elements.
NETOT	- Total number of block and fracture element.
NEL	- Current number of element sides subject to prescribed boundary fluxes.
NELGI	- Internal element counter in gas phase.
NELG2	- Internal element counter in the gas phase.
NELW1	- Internal element counter in the water phase.
NELW2	- Internal element counter in the water phase.
NELG	- Number of element in gas phase.
NELGWI	- Number of interface elements.
NELW	- Number of element in water phase.
NELI	- Number of interface elements.
NEEL	- Number of fracture elements.
NEX	- Element counter.
NFN	- Number of fracture nodes.


NHS	- Number concentrated heat sources specified using the matrices WHS and IHS.
NNPSDE	- Number of nodes per element side.
NG	- Number of sampling points in the Gauss quadrature formulae.
NGX	- Number of Gauss point in X-drection.
NGY	- Number of Gauss point in $Y$-drection.
NGZ	- Number of Gauss point in z-drection.
NGI	- Number of Gauss quadrature points (in each direction).
NG2	- Number points.
NGT	- Total number of Gauss points.
NHMS 1	- Pointer to the first implied heat source appearing in array HS .
NHMS 2	- Pointer to the last implied heat source appearing in array HS.
NHS	- Current number of concentrated heat source nodes.
NL	- Number of points at which velocity vectors have been calculated and stored in the arrays: XCE, YCE, ZCE, VCE, VYE and VZE.
NLFRC	- Current number of fracture element numbers stored in LFRACS.
NMS	- Current number of concentrated mass sources.
NN	- Number of equations in global matrix system.
NNODE	- Number of nodes of current element.
NODS (21)	- Array for global node numbers associated with current element.
NP	- Total number of nodal points.
NPRT	- Number of nodes selected for printout.
NPSINK	- Number of mass sources.
NPSTPS	- Number of time steps to proceed before solving for pressure.
NPG	- Number of nodes in gas phase.
NPG1	- Internal node counter in gas phase.
NPG2	- Internal node counter in gas phase.
NPW	- Number of nodes in water phase.
NPW1	- Internal node counter in water phase.
NPW2	- Internal node counter in water phase.
NPGWI1	- Internal counter of interface element.
NPGWI2	- Internal counter of interface element


NREADT	- An integer to indicate how many time steps that should be read from a previous solution file by subroutine HFNDUV. If a value of zero is set for this parameter the file will be read until the end. The idea of this is to enable a restart of a previous solution not only from the last time step that has been solved for. This is of interest in cases where the previous solution has degenerated at some stage and not been aborted.
NRUN	- Realization number where solving for stochastically generated fracture networks.
NS	- Number of heat sources associated with current element.
NSEEP	- Number of possible seepage nodes.
NSTBRK	- Time step for gas break through.
NSIDES	- Number of element side.
NSTEP	- Current time step.
NSUM	- Number of summation terms in the evaluation of the transient heat transfer function.
NTPN	- Number of nodes on the top boundary.
NTPNMX	- Maximum permitted number of nodes on top boundary that may be specified using the array JTPN.
NTHMXG (3)	- Array specifying the number of points used to describe the relationship between saturation and the relative gas-permeability for 3 different materials.
NTHX1	- Number of data points defining the relationship between the saturation and the capillary pressure.
NTHX2	- Number of data points defining the relationship between the saturation and the relative permeability.
NTHX3	- Number of data points defining the relationship between derivatives of the saturation versus capillary pressure and saturation.
NTSTPS	- Number of time steps to proceed before solving for temperature.
NXIMAT	- Number of material properties input for unsaturated flow conditions.
P (21)	- Basis function values at the nodes of current element.
PATM	- Pressure of 1 atmosphere (Pascal)
$\operatorname{PBFN}(21,27)$	- Matrix to hold basis function values associated with the Gauss points.
$\operatorname{PDFN}(321,27)$	- Matrix to hold the derivatives of the basis function values associated with the Gauss points.
PERM1	- Reference value of permeability.   Default: PERMI=PRMREF
PEPS	- Maximum tolerated pressure difference (DP).


PFRI (15)	- Array for equivalent fracture permeabilities of each fracture category.
PHC ( 41,3 )	- Matrix to hold the curves for saturation versus capillary pressure for 3 different materials.
PHN (21)	- Array for pressure at nodal points associated with current element.
PHERTL	- A tolerance value of the iteration error in the solution for pressure.
PHERMX	- Maximum iteration error encountered in the solution for pressure.
PHMXX T	- Maximum change in pressure from the previous time step.
PHMXTL	- Tolerance value for maximum permitted nodal change in pressure between current and previous time step. If the change in pressure exceeds this value then the time step (DT) will be reduced by a factor of 0.5. IDTRED is the maximum permitted number of time step reductions before the job will be aborted.
P HMNTL	- See explanation to PHMXTL.
PNEW	- Adjusted pressure after N.R. iteration.
POLD	- Current pressure at cavern.
POR	- Porosity.
POR1	- Porosity.
POREF	- Reference value of porosity.
Pref	- Reference value of pressure.
PR	- Poisson's ratio.
PRMREF	- Reference value of permeability.
QC	- Prescribed flux at cavern boundary.
QEPS	- Maximum tolerated error in total flux calculation.
QFRI(15)	- Array for fluxes per unit area of respective fracture class.
QFACI (15)	- Array for multiplication factors associated with each fracture category to relate the flux per unit area to the total flux for the respective fracture category.
QMG1	- Gas flux at bottom boundary.
QMG2	- Gas flux at top boundary.
QMW1	- Water flux at bottom boundary.
QMW2	- Water flux at top boundary.
QNEW	- Computed flux after N.R. iteration.
QOLD	- Current flux at cavern boundary.
RCHAR	- Characteristic block radius.
RRERM (15)	- Rock permeability associated with respective fracture category.


RUNMAX	- Maximum permitted CPU-time (seconds).   This to avoid an abnormal end of the execution by exceceeding the maximum permitted CPU-time as specified on the JOB-card. The time-taking is performed in subroutines *GFSBX1*, *HFELFX* and *HFELT1*. The following computer residential subroutines are used:   XTIMEO - to initialize the clock   XTIME - to measure the time elapsed after the initialization of the clock
SCF	- Specific heat capacity of the fluid.
SCR	- Specific heat capacity of the rock.
SGR (3)	- Array to hold residual gas saturation values for three different materials.
SIIR (3)	- Array to hold residual gas saturation values for three different materials.
SLOPE	- Unidirectional slope of the upper boundary.
SPRIME	- Imposed value of the derivative of pressure versus saturation (Usage is controlled by ISPRIM below).
SX	- Plot range in the x -direction.
SY	- Plot range in the $y$-direction.
SWN (21)	- Array for saturation at the nodes of current element.
TCF $\mathbf{1 3 ,}^{3}$	- Matrix to hold the tensor components of the thermal conductivity of the fluid.
$\operatorname{TCR}(3,3)$	- Matrix to hold the tensor components of the thermal conductivity of the rock.
TCHS	- Total effect of the concentrated heat sources.
TDIF	- Thermal diffusivity.
TDHS	- Total effect of the distributed (radioactive) heat sources.
TENRGR	- Total energy in the rock medium.
TEX(20)	- Alphanumeric information to identify current problem.
TEX2 (20)	- Alphanumeric information to identify the element mesh.
TEX3 (20)	- Alphanumeric information to identify previous execution (used for restart).
TFN(21)	- Array for fluid temperatures at the nodes of current element.
TEERTL	- Tolerance value of the iteration error in the solution for the fluid temperature.
TFERMX	- Maximum iteration error encountered in the solution for the fluid temperature.


TFLXT1	- Conductive energy transport though all element sides for the fluid.
TFLXT2	- Convective energy transport though all element sides for the fluid.
TFLXT3	- Conductive energy transport though all element sides for the rock.
TFMXDT	- Maximum change in the fluid temperature from the previous time step.
THEAT	- Total heat content in the fluid medium.
THEATR	- Total heat content in the rock medium.
THXG ( 41,3 )	- Matrix to hold saturation values associated with relative gas permeability curves for three different materials.
THX1 $(20,3)$	- Array for data points defining the relationship between saturation and capillary pressure.
THX2 $(20,3)$	- Array for data points defining the relationship between saturation and relative permeability.
$\operatorname{THX} 3(20,3)$	- Array for data points defining the relationship between saturation and the derivatives of the saturation versus capillary pressure.
TIME	- Time.
TIMEI	- Time until subtime steps are to be solved for (see option ICP1(13)).
TLOAD	- Total load used in test examples for comparisons with analytical solutions for plane stress-strain using the Kolosoff-Muskhelishvili method: Fung,y.C. (1965), "Foundations of Solid Mechanics", PrenticeHall.
TNRG	- Iotal energy (associated with the heat) in the system.
TREF	- Reference value of temperature.
TRERTL	- Tolerance value of the iteration error in the solution for the rock temperature.
TRERMX	- Maximum iteration error encountered in the solution for the rock temperature.
TRMXDT	- Maximum change in rock temperature from the previous time step.
$\operatorname{UNSLBL}(15,3)$	- Matrix for alphanumeric text description (max. 60 characters) of 3 different materials.
VAIfa	- Angle.
VEC (8)	- See description of element matriy systems.
VECI (8)	- See description of element matrix systems.
VEC2 (8)	- See description of element matrix systems.
VEImAX	- The maximum discharge encountered at the points (XCE, YCE, ZCE) selected for calculation of discharges.


VSCREF	- Reference value of the dynamic viscosity of the fluid
VXE (625)	- Array for x-components of the specific discharge vectors.
VYE (625)	- Array for $x$-components of the specific discharge vectors.
VZE (625)	- Array for $x$-components of the specific discharge vectors.
W11,W12	- Weights to be applied to the two most recent iterative solutions.
W21,W22,W23	- Weights to be applied to the three most recent iterative solutions.
WFLXLB	- Sum of the fluxes through all element sides.
WG (4)	- Array for weights to be given to the sampling points in the quadrature formulae.
WG1 (4)	- Array for weights associated with Gauss quadrature points (see XG1).
WGX (4)	- Weights associated with X-coordinates.
WG2 (4)	- Array for weights associated with barycentric coordinates (see XG2, XG2).
WGY (4)	- Weights associated with Y-coordinates.
WGZ (4)	- Weights associated with z-coordinates.
WHS (8)	- Array for the heat sources at the nodal points of current element.
WLV1	- Water level in the well. This applies to test cases used for model verification.
WLV2	- Water level at the lateral boundary. This applies to test cases used for model verification.
WPSINK (5)	- Array for point sinks with fluid.
WSHF	- Block shape factor   Default: WSHF=1.0
WTBL	- Initial level of the water table. This applies to test cases used for model verification.
WSUM	- Total exchange of heat between the fluid and the rock media.
WTGT (27)	- Array to hold weights associated with the Gauss points.
XCE (625)	- Array for $x$-coordinates of points at which specific discharge vectors are to be calculated.
XF1, XF2	- X-coordinates (used in conjunction with YF1, YF2, ZF1, ZF2) to specify a test region, whose material properties may be modified by various user supplied input subroutines.
$\operatorname{XFRI}(125,15)$	- Auxiliary matrix for the geometrical descriptions of each fracture category.
XI2 (8)	- Array for local x-coordinates of the nodal points of a 2-D parabolic element.


XI3 (8)	- Array for local x-coordinates of the nodal points of a 3-D hexahedral ( 8 nodes) element.
XI4 (21)	- Array for local x-coordinates of the nodal points of a 3-D hexahedral (8-21 nodes) element.
XLCAVI (15)	- Array for representative lengths along caverns for each fracture category.
XLGAS	- Gas saturation (expressed as length along segment).
XLWAT	- Water saturation (expressed as length along segment)
XLGWI	- Length of interface element. The element is split into two halves where one is for gas and the other one for water.
XLTOT	- Total length of segment.
XMIN, XMAX	- Extreme values in the $X$-direction of the flow domain.
$X G(4)$	- X-coordinates of Guass points.
XG1 (4)	- Array for Gauss quadrature points.
XG2 (4)	- Array for barycentric coordinates.
XORG	- X-origin on the graphical display.
XREF	- Reference coordinate in the x-direction.
XWTBL (12.5)	- Array for $X$-coordinates of water table.
$\mathrm{XYZ}(3,21)$	- Matrix to hold coordinates of the nodal points associated with current element.
YCE (625)	- Array for $y$-coordinates of the points at which specific discharge vectors are to be calculated.
YF1, YF2	- Y-coordinates (used in conjunction with XF1, XF2, ZF1, ZF2) to specify a test region, whose material properties may be modified by various user supplied input subroutines.
YG(4)	- Y-coordinates of Guass points.
YG2 (4)	- Array for barycentric coordinates.
YMIN, YMAX	- Extreme values in the $y$-direction of the flow domain.
YORG	- Y-origin on the graphical display.
YREF	- Ditto in the $y^{\text {-direction. }}$
YWTBL (125)	- Array for Y-coordinates of water table.
zCE (625)	- Array for $z$-coordinates of the points at which specific discharge vectors are to be calculated.
2E3 (8)	- Array for local z-coordinates of the nodal points of a 3-D hexahedral ( 8 nodes) element.
ZE4 (8)	- Array for local z-coordinates of the nodal points of a 3-D hexahedral (8-21 nodes) element.


ZF1, ZF2	- Z-coordinates (used in conjunction with XF1, XF2, YF1, YF2) to specify a test region, whose material properties may be modified by various user supplied input subroutines.
ZG(4)	- z-coordinates of Guass points.
ZMIN, ZMAX	- Extreme values in the z-cirection of the flow domain.

## Description of element matrix variables



## 3 INPUT DATA AND USE OF THE PROGRAM

### 3.1 MAIN PROGRAM PREPARATION

3.1.1 Nodal data arrays
3.1.1.1 Nodal coordinates
3.1.1.2 Pressure data arrays
3.1.1.3 Fluid temperature data arrays
3.1.1.4 Rock temperature data arrays
3.1.1.5 Heat transfer function data arrays
3.1.1.6 Distributed heat source data arrays
3.1.1.7 Rock displacement data arrays
3.1.1.8 Gas migration data arrays
3.1.2 Element data arrays
3.1.2.1 Element incidences arrays
3.1.2.2 Permeability data array
3.1.2.3 Work storage
3.1.3 Matrix problem arrays
3.1.3.1 Front solution arrays
3.1.3.2 Band solution arrays

### 3.1 MAIN PROGRAM PREPARATION

The main task of the main program HFMAIN is to specify the dimensions of most of the problem dependent arrays. The problem dependent arrays may be divided into the following main categories:
(i) Nodal data

Refers to any information being specified at the nodal points in the element mesh.

MXNPX - Maximum permitted number of nodal points
(ii) Element data

Refers to information valid for the whole element
MXNEX - Maximum permitted number of elements
MXNDE - Maximum permitted number of nodes per element
(iii) Work arrays for the frontal solver

MXFRO - Maximum permitted frontwidth
MXNNX - Parameter which either equal to the frontwidth
(out of core solution) or equal to the frontwidth
plus the maximum permitted number of unknowns
in front solution (in-core solution).
For in-core solution:
PARAMETER (MXNNX=MXFROX+MXNPX)
For out-of-core solution:
PARAMETER (MXNNX=MXFROX)
MXWORK - Parameter which is set equal to two times the maximum permitted number of unknowns (e.g. MXWORK $=2 \star$ MXNPX)

The previous variables are set in the beginning of the main program using Parameter statements. MXNPX, MXNEX and MXFROX and MXNDE are primary variables, while MXLBHX, MXNNX and MXWORK are evaluated by the parameter statements.


MXFRON - Maximum permitted frontwidth due to the work arrays EQUAT, PVCOL, VECRV, GLOAD and NACVA. These arrays are used by the front solution subroutines HFRON1 and HFRON2

The following set of arrays are dimensioned in the main program:
3.1.1 Nodal data arrays
3.1.1.1 Nodal coordinates
NODES - Node numbers
XN - X-coordinates
YN - Y-coordinates

ZN - Z-coordinates
3.1.1.2 Pressure data arrays

PH - Values of pressure
LBPH - Codes ( $=0$ active value, $=1$ prescribed value)
PH1I - Values of the pressure at the last iteration
PH2I - Values of the pressure at the last but one iteration
PHPTS - Values of the pressure at the previous time step
PHDT - Values of the pressure difference between current and previous time step

PHDX - Values of specific (Darcy) velocities in x-direction
PHDY - Values of specific (Darcy) velocities in y-direction
PHDZ - Values of specific (Darcy) velocities in z-direction
LBPHDX - Codes associated with PHDX
LBPHDY - Codes associated with PHDY
LBPHDZ - Codes associated with PHDZ
PERM - Values of the intrinsic permeability
VISCF - Values of the dynamic viscosity of the fluid
DENSF - Values of the fluid density
PORSTY - Nodal array for porosity at respective node
NJN - Work area used by subroutine HFLXNU in the calculation of the discharge vectors at the nodal points

SW - Values of saturation.
3.1.1.3 Fluid temperature data arrays

TF - Values of the fluid temperature
LBTF - Codes associated with $T F(=0$ active value, $=1$ prescribed value)


PGPTS	- Values of the gas pressure at the previous time step	
PGDT	- Values of the gas pressure difference between current time step and previous time step	
AF11	- Coefficients associated with time derivatives of the fluid pressure (Fluid flow equation). $\phi \rho^{\prime}\left[S \mid c^{\prime}+c^{r}-S^{\prime}\right]$	
AF12	```- Coefficients associated with time derivatives of the gas pressure (Fluid flow equation). \phi\rho'S'```	
AG11	- Coefficients associated with time derivatives of the fluid pressure (Gas flow equation). $\phi\left\|1-S_{w i r}\right\| P^{g} \frac{M}{Z R T} S$	
AG12	- Coefficients associated with time derivatives of the gas pressure (Gas flow equation). $\phi \left\lvert\, 1-S_{\text {wir }} \frac{\\|}{Z R T}\left[(1-S)\left(1+c^{r} P^{a}\right)-p^{g} S^{\prime}\right]\right.$	
ZRTM	$-\frac{M}{(Z R T)}$	
3.1.2.1	Element data arrays	
IELNOD	- Matrix of element incidences (MXNE,MXNNDE)	
IELTYP	- Array of element type codes   $=11-D$ three-nodes quadratic element   $=52-D$ eight node parabolic element   $=73-D$ hexahedral eight node element   $=11$ 3-D hexahedral curvilinear 8-21 nodes element   $=12$ 3-D prismatic curvilinear 6-15 nodes element	
IELMAT	- Element matrix for material number and phase code for respective element   IELMAT (IEL, 1) is material number for current element   IELMAT(IEL,2) is phase code for current element	
IELS	- Array for element numbers. Used as an auxiliary array for sorting and renumbering of element incidences.	
3.1.2.2	Permeability data array	
HCEL	- Matrix of the intrinsic permeability in $x^{-}, y^{-}$or z-direction   HCEL(IEL, 1) is permeability in the r-direction   HCEL (IEL, 2) is permeability in the $y$-direction   HCEL (IEL, 3) is permeability in the $z$-direction	
3.1 .2 .3	Work storage	
NDFRO	- Array used by subroutine CHKFRN to calculate the maximum frontwidth	
3.1 .3	Matrix oroblem arrays	


3.1.3.1	Front solution arrays
WFRONT	- HFRON1: Vector of size MXFRON* (MXFRON+1)/2   HFRON2: Matrix of size MXFRON*MXFRON   HFMAIN: Matrix of size MXFROX*MXNNX
CFRON	- Vector of length MXNPX
WFRONX	- Work matrix for frontal sowers
IWORK	- Integer work matrix for front sowers

Note:
The specific nodal fluxes by subroutine HFLXNU are used only for printout together with the pressure values. The advective fluxes considered in the heat flow equation are evaluated by Gauss quadrature during the element integration.

```
3.1.3.2 Work arrays for solution of the system of linear
 equation
```

WFRONT - Global matrix of size: MXNN*MXBAND
CFRON - Right hand side vector to WFRONT of size MXNN
In solving the system of algebraic equations resulting from the element integration either a front or a band solution technique has been used. When using the frontal method, the parameters MXNN and MXBAND will have a different meaning than the explanation that was given previously for these parameters.
In the frontal method the forward elimination procedure according to Gauss's elimination method is performed at the same time as the element matrices are being assembled. Thus, only limited a portion of the matrix system needs to be held in core throughout the solution process. This will in most cases substantially reduce the size of the core required to solve the matrix problem. The part of the matrix held in core is called the 'front' and the number of variables involved in the front determines the 'frontwidth'. The frontwidth will depend upon the structure of the problem and the order in which the element matrices are being assembled, but not on the numbering of the nodes. The computer time is roughly proportional to the number of nodal variables multiplied by the square of the frontwidth.
There is no direct formula available to calculate the frontwidth, as for band-matrix problems. Therefore, the program checks current frontwidth before entering either of the two front solvers, which are employed by the program. The maximum size of the front- width encountered in the problem will then be checked against the size of the work arrays associated with the front solution subroutines.
First the size of the work array WFRON (MXNN, MXBAND) will be examined. For the symmetric front solver (HFRNF1) the permissible front width with regard to the dimensions of this array is equal to

```
\(\operatorname{MFRON}=\operatorname{SQRT}(2 * M X N N * M X B A N D+0.25)\)
```

and for the non-symmetric front solver (HFRNF2) the permissible frontwidth is equal to

MFRON=SQRT (MXNN*MXBAND)
The second step is to compare the value of MFRON with the value of MXFRON representing the dimensions of the work arrays $w F R O N X$, and IWORKX. The smallest value of MFRON and MXFRON represents the largest permissible frontwidth in the program. Finally, this value will be checked against the actual frontwidth encountered in the program.

```
3.2 INPUT DATA PREPARATION
3.2.1 Compulsory input
The input is grouped into three major categories:
 a) Specification of array sizes and selection of subroutines.
 This is performed in the Main program.
 b) Encoded control and parameter data and physical parameters.
 c) User controlled input for boundary and initial conditions,
 permeability and porosity, etc.
Data set 1-------------Subroutine selection
 5-10 A6 CHKSTP Subroutine for time march scheme. Input and
 initialization of time step data are perfor
 med by an alternative entry *SETSTP*.
 Currently the following subroutines are
 implemented:
 CHKSTP, CHKST1, CHKST2, CHKST3, CHKST4
 CHKSTP is a dummy subroutine that will
 will have no effect and the time
 stepping will be performed
 according to the values of DT and
 DTFAC (see below).
 CHKST1 is subroutine for logarithmic time
 time stepping. The following input
 record must be supplied:
 READ (INUN, 820) DTIMEP(1),NCYCLE,
 NFAC,
 (FAC(I),I=1,NFAC)
 820 FORMAT(F10.0,2I5,10F5.0)
 where
 DTIME(1) - Initial subinterval
 NCYCLE - Number of cycles
 NFAC - Number of subintervals
 within each cycle
 FAC - Array of length -NFAC-
 containing factors for
 subintervals
 Example of input:
 DTIME (1)=3.15576e7,NCYCLE=4,NFAC=7
 FAC (1)=0.5, FAC (2)=0.5, FAC (3)=1.0,
 FAC(4)=1.0, FAC (5)=2.0, FAC (6)=2.0,
 FAC (7) =2.0
 Output:
 DTIME (2)=1.58e7, DTIME (3) =1.58e7,
 DTIME (4)=3.16e7, DTIME (5)=3.16e7,
 DTIME (6) =6.31e7, DTIME (7) =6.31e7,
 DTIME (8)=6.31e7, DTIME (9)=1.58e8,
 DTIME (10)=1.58e8, DTIME (11)=3.16e8,
 etc.
 Note:
 the subintervals were here multiplied
 with 365.25*86400 to get the times
 in seconds
```

CHKST4	is a subroutine that will perform
the time stepping according to	
the input being read by the alter-	
native entry SETST4.	
Input description:	
Record $1:$	Optional text
Record $2:$	Maximum permitted number
	time points, Factor for
	conversion to SI-time
	units (seconds)
	FORMAT(I5,F15. 0$)$
Record 3: Time points (free	
	format)


15-20	A6	SFRIN1	Subroutine for input of boundary and initial conditions for two-phase flow
25-30	A6	SFRUT1	Subroutine for print out of two-phase flow solution values
15-20	A6	HFINS 1	Main control subroutine for input and initialization

Data set 2-----------Maximum $C P U-t i m e ~ a n d ~ i n p u t / o u t p u t ~ u n i t ~$ number (GFSBX1)

Cols Format Identifier Explanation

I-5 F5.0 RUNMAX Maximum permitted CPU-time (seconds). This to avoid an abnormal end of the execution by exceeding the maximum permitted CPU-time as specified on the JOB-card. The time-taking is performed in subroutines *GFSBXI*, *HFELFX* and *HFELTI*. The following computer residential subroutines are used:

XTIME0 - to initialize the clock
XTIME - to measure the time elaps-
ed after the initializa-
tion of the clock
New record--------------Specification of input and output data sets

1-5 I5 INUN(1) Logical unit number for input to HFINPT, HFNDIN and HFELIN Default: $\operatorname{INUN}(1)=5$

6-10 I5 INUN(2) Logical unit number for input to subroutines HFSRC1, HFBCX1 and SELNDS
Default: $\operatorname{INUN}(2)=5$

11-15	I5	INUN(3)	Logical unit number for data from a previous execution to be read in. This is to continue the execution using solution values from the most recent time step in a previous execution as initial values. This is carried out by subroutines HFNDUV and HFNDU1. If no data are to be input in this way, then set: $\operatorname{INUN}(3)=0$
16-20	I5	INUN (4)	Output unit used for storage of of input to subroutines HFINPT, HFNDIN and HFELIN Default: INUN(4)=21
21-25	I5	INUN (5)	Output unit for solution values of pressure and temperatures at each time step. This is carried out by subroutine HFSAVD. This output may later be used as input using INUN (3)   Default: $\operatorname{INUN}(5)=22$
26-30	I5	INUN (6)	Input unit for unsaturated data.   Default: $\operatorname{INUN}(6)=55$
31-35	I5	INUN (7)	Input unit for stress data.   Default: $\operatorname{INUN}(7)=56$
36-40	I5	INUN (8)	Input unit for element mesh.   Default: $\operatorname{INUN}(8)=5$
41-45	I5	INUN (9)	$\begin{aligned} & \text { Input unit for drain data } \\ & \text { Default: INUN }(9)=57 \end{aligned}$
New re	or		Intermediate data sets
Cols	Form	Identifi	Description
1-5	I5	IUNIT (1)	Logical unit for storage of pressure equations
6-10	I5	IUNIT (2)	Logical unit for storage the right hand sides of pressure equations
11-15	I5	IUNIT (3)	Logical unit for storage of the temperature equations
16-20	I5	IUNIT (4)	Logical unit for storage of the right hand sides of the temperature equations
21-25	I5	IUNIT(5)	Logical unit for storage of the element matrices for the pressure equations
26-30	I5	IUNIT (6)	Logical unit for storage of the element matrices for the temperature equations
31-35	I5	IUNIT (7)	Currently not used
36-40	I5	IUNIT (8)	Currently not used
41-45	I5	IUNIT (9)	Logical unit for intermediate storage of frontal equations   Default unit number: IUNIT(9) $=03$



		IDISCR	Control parameter for mode of discrete modelling   > Discrete modelling
41-45	I5	IORTST	Control parameter to select option in subroutine *HFTEST*.   This parameter is used for various ad hoc settings such as Hydrocoin level 1 , Case 1,3 and 4, Level 2, Case 1.
		ICRAY	$=1$ When running on Cray
		IFNPG1	$=1$ Nodal permeability, fluid density, and viscosity are constant with time
		IWTBL	An integer to indicate if the position of the water table is to be located Conly applicable to 2-D unsaturated flow problems) IWTBL > 1 water table to be located
31-35	I5	IPLOT	Plot parameter $(=0$ If no plotting is to be performed, $=1$ If plotting is to be performed).
1-5	I5	MXSTEP	Maximum permitted number of
6-10	I5	MXITER	Maximum permitted number of iterations per time step.
21-30	20A4	DT	Time step.
31-35	20A4	DTFAC	Time step multiplier   In the present version of the program (subroutine *GFSBXI*) a special subroutine (*CHKSTP*) is called to set the value of the time step multiplier *DTFAC* for each time step. Note also that the maximum permitted time step DTMAX is given by DTMAX $=D T * D T M X F C$   where DTMXFC is a multiplier being defined in subroutine *HFINPT*.   Default: DTFAC=1.0
61-65	I5	NPSTPS	```Number of time steps to be advanced before solving for pressure Default: NPSTPS=1```
66-70	I5	NTSTRS	Number of time steps to be advanced before solving for temperature   Default: NTSTPS=1
$36-40$	I5	MODPRT	printout control parameter to suppress the printout of intermediate time steps, e.g. MODPRT=1 gives printout for every time step   MODRRT=2 gives printout for time steps $1,3,5,7, \ldots$   MODPRT=3 gives printout for time steps $1,4,7,10, \ldots$   etc.   Default: MODRRT=1

NREADT $\quad$| Restart time step in cases where the |
| :--- |
| restart is to be made from a previous |
| solution |

Convergence criteria

01-10 F10.0 PHERTL | Tolerance value for convergence in pres- |
| :--- |
| sure solution |
| Default: PHERTL=1.E-9 |

The following parameters are used in two-phase flow calculations only

PHMXTL Maximum permitted change in pressure during current time step

PHMNTL	Maximum accepted change in pressure   during current time step
IDTRED $\quad$Maximum permitted number of time step   reductions	



1-5	F5.0	W11	Weighting factor for the most recent itera tion in a two point iteration scheme.
6-10	F5.0	W12	Weighting factor for the last iteration but one in a two point iteration scheme.
11-15	F5.0	W21	Weighting factor for the last iteration in three point iteration scheme.
16-20	F5.0	W22	Weighting factor for the last iteration but one in a three point iteration scheme.
21-25	F5.0	W23	Weighting factor for the last iteration but two in a three point iteration scheme.

Note: HFWAVI: A(I)=W11*A(I) + W12*A1I (I)
HFWAV2: $A(I)=W 21 * A(I)+W 22 * A 1 I(I)+W 23 * A 2 I(I)$
Miscellaneous control parameters

1-5	I5	IPORF	$>0: ~ P O R=F P O R(I E L, X Y Z, N E)$
6-10	$\pm 5$	IPERF	
11-15	I5	IOPOR	Control parameter for porosity $=1$ Nodal porosity array to be used
16-20	I5	IOPAC	Control parameter for spatial treatment of permeability   IOPHC=0 permeability will be defined as an element property   IOPHC=1 permeability will be defined as a nodal property


			IOPHC=2 permeability values are to be associated with nodes through a function subroutine given by the user
21-25	I5	IMDPTH	Control parameter to average permeability and porosity over each element
26-30	I5	IPRUNS	Control parameter for printout of unsaturated data in subroutine *HFINP4*.
31-35	I5	IPSINK	Control parameter to specify to which phase point sources are to be applied
36-40		IMSTRE	Element matrix control parameter   $=0$ Element matrix and the R.H.S to be written on separate records   $=1$ Element matrix and the R.H.S to be written on the same record
41-45		IFMODE	```Eront solution control parameter = 0 Direct elimination of element matrix systems```
			Example of usage of direct elimination: IFMODE $=0$   $\operatorname{IUNIT}(9)=-1$ : No auxiliary storage   In HFMAIN: Set MXNNX=MXFROX+MXNPX   JCL : //GO.FT03F001 DD DUMMY
			```Example of usage of direct elimination: and using auxiliary storage: IUNIT(9) = 03 or 00 : Data set for temporary storage of front equations In HFMAIN: Set MXNNX=MXFROX JCI ://GO.ETO3F0O1 DD DSN=&SCRACTCH // ... etc.```
			$=1$ Element matrix systems to be written to disk before elimination will take place
			```Example of usage of non-direct elimination: IFMODE = 1 IUNIT(9) = 03 or 00 : Data set for temporary storage of front equations In HFMAIN: Set MXNNX=MXFROX JCL ://GO.FTOSFOO1 DD DSN=&SCRACTCH // ... etc.```
46-50		IPRCHK	Eront solution printout parameter
51-55		IFRM	Read/write control parameter in front solver
56-60		MISCHK	General printout control parameter
61-65		IDNEMS	Mass source specification parameter $=0$ Mass source input   = 1 Volumetric source input



```
ICP1(11) - Printout control parameter (PHSLVF, PHSLVB)
 = O No printout to be performed
 = 1 Solution values to be printed
 = 2 Message on global element assembly to be out-
 put
 = 3 Message on the application of the boundary
 conditions to the global matrix to be output
 = 4 Global matrix to be printed
 = 5 Global matrix to be printed after the boun-
 dary conditions have been applied
ICP1(12) - Printout control parameter (TMSLVF, TMSLVB)
 = 0 No printout to be performed
 = 1 Solution values to be printed
 =2 Message on global element assembly to be out-
 put
 = 3 Message on the application of the boundary
 conditions to the global matrix to be output
 = 4 Global matrix to be printed
 = 5 Global matrix to be printed after the boun-
 dary conditions have been applied
ICPI(13) - Control parameter to indicate that the first time step
 DT is to be divided into ICP1(13) sub time steps
 = O No action to be taken
 > O Set DT=DT/ICPI(13)
```

ICP1(14) - Control parameter to specify type of hexahedral element to be input (GFSBX1, HFIELN, HFLGA1, HFLGA2). Currently this option is set in subroutine *HFTEST* using the parameter *IEL21*.

IEL21 $=0$ Standard 8 node hexahedral element to be used


IEL21 = 1 Curvilinear isoparametric hexahedral element (8-21 nodes) defined as shown below

2--09---1	
1	. / !
10	12 !
/ 1	18 / 17
$/$	1
3---11---4	
!	!
!	6..113... 5
$!$.	! /
19	20 /
! 14	! 16
! .	! /
$!$.	!/
7---15---8	

IEL21 = 2 Curvilinear isoparameteric hexahedral element (8-21 nodes) defined as shown below


This option causes a call on subroutine *HFIELN* from subroutine *GFSBXI* to redefine the element incidences according to the previous definition.

ICP1(15) - Printout control parameter (CHKFRN)
$=0$ No action to be taken
$=1$ Printout the frontwidth at each element assembly
ICP1(16) - Printout control parameter (HFELFX, HFELT1)
$=0$ No action to be taken
$=1$ Messages to be output
ICP1(17) - Input control parameter (GFSBXI)
$=0$ No action to be taken
$=1$ Essential boundary conditions on the pressure head to be input by calling subroutine HFBCX1

ICP1(18) - Output control parameter (HFNFLU)
$=0$ No action to be taken
$=1$ Flow velocities at nodal points to be computed and output
Note: This option is currently not used in the present version of the model program (*GFSBX1*).

ICP1(19) - Output control parameter (VELXY3)
$=0$ No action to be taken
$=1$ Flow velocities to be evaluated at interior points of elements, e.g. Gauss' points
$=2$ Flow velocities to be printed (VELXY3)
ICP1(20) - Point heat source/sink control parameter (HFELT1, HFSCRI)
$=0$ Heat source/sink to be applied to both fluid and rock media
$=1$ Heat source/sink to be applied to the fluid medium only
$=2$ Heat source/sink to be applied to the rock medium only

```
Continued on new record---
Cols Format Identifier Explanation
1-40 20I2 ICP1 Array of control parameters
ICPI(I) - Control parameter to select equation solver (GFSBX1,
ICP1(21) - Permeability control parameter (*GFSBX1*)
 = 0 No action to be taken
 = 1 Permeability matri: HCEL to be initialized by
 the value of the reference permeability as
 given by HCREF.
ICPI(22) - Printout control parameter (HFWFUN)
 = 0 No printout to be performed
 = 1 Heat transfer function values to be printed
 =2 Heat transfer function values to be printed.
 This is a special option for 1-D analysis
 using 2-D elements
```

```
ICP1(23) - Printout control parameter (HFWFN1)
 = 0 No printout to be performed
 = 1 Results to be printout
 = 2 Results of the summations also to be included
 = 3 Full printout to be performed
ICP1(24) - Newton-Raphson iteration is to be performed
 = 0 No action to be taken (Direct iteration)
 =1 Newton-Raphson iteration
ICPI(25) - Printout control parameter (HFLMU1)
 = 0 No action to be taken
 = 1 Element matrices formed by subroutine HFLMU1
 to be output
 Note: Subroutine HFLMU1 is called from subrout-
 ine TMSLVB
ICPI(26) - Printout control parameter (HFELT1)
 = 0 No action to be taken
 =1 Information of the material properties of the
 elements to be output by calling subroutine
 HFELU1
ICP1(27) - Printout control parameter (HFLGA1, HFLGA2)
 = 0 No action to be taken
 = 1 Basis function values to be printed out
ICP1(28) - printout control parameter (INTEG7, INTEG8)
 = 0 No action to be taken
 = 1 Fluid density, hydraulic conductivity and
 hydraulic gradient to be printed for each
 Gauss point
ICP1(29)
ICP1(30)
ICP1(31)
ICP1(32)
ICP1(33) - Input control parameter (HFTEST)
 =0 No action to be taken
 =1 See subroutine *HFTEST*
 Note: Subroutine *HFTEST* has been used for
```




41-50	E10.0	FRPERM	Coefficient to specify permeability of a fracture zone versus the surrounding rock. The permeability of the fracture zone is obtained by multiplying FRPERM by the rock permeability.   Default: FRPERM=1.0
Reference coordinates and unidirectional slope of flow domain -----			
61-65	E5.0	XREF	Reference coordinate in the $x$-direction
66-70	F5.0	YREF	Ditto in the $y$-direction
71-75	E5.0	ZREF	Ditto in the $z$-direction
71-75	F5. 3	SLOPE	Unidirectional (fractional) slope. E.g. 0.005 means a slope of 5 in 1000 . The value of the slope is tranferred to subroutines *MTOR2D* and *BND2DN* in 2-D, or *MTOR3D* and *BND3DN* in 3-D, see also Data set No 17 in the sequal ( $I O P=8$ and $I O P=9$ ).

Thermal properties of the fluid

31-40	F10.0 CTF	Coefficient of thermal volume expansion
1-10	F10.0 SCF	Specific heat capacity of the fluid.
1-10	F10.0 TCE	```Thermal conductivity of the fluid Default: TCF (I,J)=TCF for I.EQ.J TCF (I,J)=0 for I.NE.J```
		Note: If anisotropy in the thermal conductivity applies then subroutine *HFINPT* should be modified.



51-60	F10.0 DR	Rock density
11-20	F10.0 SCR	Specific heat capacity of the rock.
11-20	F10.0 TCR	```Thermal conductivity of the rock Default: TCR(I,J)=TCR for I.EQ.J TCR(I,J)=0 for I.NE.J```
31-40	E10.3 GEOGRD	Geothermal gradient (fractional). The value of this parameter is transferred to subroutine *PHYDRO*, which is used to set hydrostatic boundary conditions.
21-30	F10.0 HT	Heat transfer coefficient for the quasisteady state heat transfer function. $u=h * \eta-\eta$

A default value of $h$ is computed as:
$h=\frac{3 \lambda c s}{\delta a^{2}}(1-\phi)$

```
 where c is the contact area coefficient, s
 the shape.factor and \deltais a
 coefficient being dependent on the assumed
function for the heating of the blocks.
Heat transfer function parameters --
Cols Format Identifier Explanation
--
1-5 F5.0 RCHAR
 Characteristic block radius
 Default: RCHAR=1.0
6-10 F5.0 CAREA Contact area coefficient
 Default: CAREA=1.0
 Block shape factor
 Default: WSHF=1.0
Coefficient between zero and one to be
applied to the quasi-steady state heat
transfer function. For T=at CDR=0.20,
which is used as default value
 Default: CDR=0.20
 Maximum permitted number of summation
 terms for the heat transfer function eval-
 uation
 Default: NSUM=25
 Tolerance value to be used as the criter-
 ion to stop summation of terms in infinite
 series at the heat transfer function eval-
 uation
 Default: EXTOL = 10 -30
 This data field is currently not used.
 Coefficient in interpolation formula for
 the radioactive decay of the heat source
 (a, in the formula below).
 Coefficient in interpolation formula for
 the radioactive decay of the heat source
 (}\mp@subsup{\alpha}{1}{}\mathrm{ in the formula below).
 Coefficient in interpolation formula for
 the radioactive decay of the neat source
 (}\mp@subsup{a}{2}{}\mathrm{ in the formula below).
 Coefficient in interpolation formula for
 the radioactive decay of the heat source
 The coefficients for the radioactive decay
 are stored in the common block HFREF3 and
 thereby transferred to the function subrou-
 tine *DECAY*.
 (}\mp@subsup{\alpha}{2}{}\mathrm{ in the formula below).
 The following formula is used:
 Q(t)
```

```
Selection of functions for physical properties:
 Fluid density, Fluid viscosity, Gas viscosity,
 Permeability with depth and Porosity with depth functions
 5-10 A6 FUNDNF Function for fluid density
 FNDNF1 gives the reference density.
 FNDNF3 approximates the fluid density
 by a fourth degree polynomial.
 FNDNF4 approximates the fluid density
 by a linear function.
 This function was used in
 Hydrocoin Level 1, Case 4.
 FNDNF6 approximates the fluid density
 by an exponential function
 This function was used for
 Hydrocoin Level 2, Case 1.
 15-10 A6 FUNVSC Function for dynamic viscosity of the fluid
 FNVSF1 gives the reference value as
 been input to HFINPT.
 FNVSF2 approximates the dynamic viscosity
 using a power function.
 25-30 A6 VISGAS Function for dynamic viscosity of the gas
 VISGAl uses reference value
 VISGA2 approximates the dynamic viscosity
 of the gas as function of pressure
 and temperature.
 35-40 A6 FUNHCF Function for permeability versus depth
 FNHC1 function returning a constant
 value.
 FNHC2 exponential function.
 FNHC3 function applied to a specified
 region.
 45-50 A6 FUNPOR Function for porosity versus depth
 FNPORI constant permeability.
 FNPOR2 exponential function.
 FNPOR3 function applied to a specified
 region.
```


### 3.2.2 User controlled input

The user controlled input was used to govern various initialization and input of mass or heat sources, unsaturated properties, grid modification, fracture distribution data for gas migration, etc. The motivation for the user controlled input was to facilitate the implementation of problems specific input settings to cause the least interference with the actual model programs.

The user controlled input was organized in such a way that a general subroutine call is made to a subroutine called PRGSEL. This subroutine contains most work arrays in its argument list. Most common blocks are included in it for possible modification of parameter data. The subroutine PRGSEL is called just before the beginning of the solution phase.
Therefore, practically any parameter or field data could be modified or input using the user controlled input. Subroutine PRGSEL contains a sequence of IF...THEN...ELSEIF tests for the various subroutine call. When a call on a requested subroutine is found among the input stream then the call will be executed.

```
3.2.2.1 General description of the layout used for the user controlled
 input (*PRGSEL*)
General explanation
```

Command:
SUBROU IU JU + Optional text
IU is the input file number from which data are to be read. If
00 is set instead of $I U$ then this means that there is no input to
be specifically read as a result of the current command. This
means that data are taken from common areas or specified directly
in the subroutine or function used to execute the command.
$J$ is the output file number for possible echoing of the input.
This is currently used for very few commands and could for the
time being be seen as a dummy feature that will be implemented
later on.

## Purpose:

Short comment on the general purpose of current command plus more or less details about input etc.

The following call is made:
Generally the operations associated with current command are performed by some subroutine or function. Therefore, to facilitate the user to replace the command by an alternative subroutine or function the imposed call is given.

CALL SUBROU ( argument list )
3.2.2.2 List of user controlled input subroutines


HFELMP	- Specify (unsaturated) material properties for elements or nodes
HFELM1	- Set element permeability according to values of -IELMAT-
HFELPM	- Specify (unsaturated) material properties for elements or nodes
HFELP1	- Set element porosity
HFIELN	- Redefine matrix of element incidences if 8-21 node hexahedral element is to be used
HFINFR	- Input fracture elements
HFINP 3	- Input of material properties for unsaturated conditions
HFINP 4	- Set the initial pressure distribution (hydrostatic)
HFIN 4 P	- Set the initial pressure distribution hydrostatic for unsaturated flow conditions
HFINP 5	- Input data for stress solution and input of initial and boundary conditions
HFMSRC	- Input concentrated mass sources
HFNDIF	- Input nodal points for discrete system of fractures and blocks
HFNDIN	- Input nodal points
HFNFRC	- Invoke subroutine to set nodal permeability for nodes associated with fractures
HFPERM	- Set nodal permeabilities
HFPRMA	- Set mid-side properties (permeability) as averages of adjacent corner nodes
HFSRC1	- Input concentrated and/or distributed heat sources
HYDSBS	- Input subroutine for pressure, permeability, porosity, etc.
MVSDE1	- Modify element mesh according to previous specification
NODSL2	- Specify area within which nodes are to be selected for printout
NODSL 4	- Specify and set zones of specific material properties


PHXMIN	- Set prescribed pressure on left hand boundary
PHXMAX	- Set prescribed pressure on right hand boundary
PHYMIN	- Set prescribed pressure on bottom boundary
PHYMAX	- Set prescribed pressure on top boundary
PHYDRO	- Sets hydrostatic boundary conditions for temperature dependent fluid density and a given temperature distribution
TFXMIN	- Set prescribed temperature on left hand boundary
TFXMAX	- Set prescribed temperature on right hand boundary
TFYMIN	- Set prescribed temperature on bottom boundary
TFYMAX	- Set prescribed temperature on top boundary
SELNDS	- Input node numbers for selected printout of of nodal data
SFRIN1	- Set boundary and initial conditions for 1-d gas flow test
SHWTIN	- Input the time dependent energy output for Hydrocoin Level 2, Case 2

```
 PRGSEL - Subroutine to perform user controlled input
 to G W H R T*
 called from: HFINSI
 SUBROUTINE PRGSEL(PH,LBPH,PH1I,PH2I,PHPTS,PHDT,SW,DU,LBDU,
```

    IMPLICIT REAL (A-H,O-Z)
    ```
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION RH(MXNP),LBPH(MXNP),PH1I (MXNP),PH2I (MXNP),
 PHPTS (MXNP),
 PHDT (MXNP),SW (MXNP),DU(MXNP, 3), LBDU (MXNP, 3),
 TF (MXNP), LBTF (MXNP),TFII (MXNP),TF2I (MXNP),
 TFPTS (MXNP),
 TFDT (MXNP),
 TR (MXNP),LBTR (MXNP),TR1I (MXNP),TR2I (MXNP),TRPTS (MXNP),
 TRDT (MXNP),TF0 (MXNP),
 PHDX (MXNP), PHDY (MXNP), PHDZ (MXNP),
 LBPHDX (1), LBPHDY (1), IBPHDZ (1),
 DHS (MXNP),
 NODES (MXNP), XN (MXNP), YN (MXNP),ZN (MXNP),NJN (MXNP)
C
 DIMENSION
 TIRA (MXNP), HFWA (MXNP), HFWA1 (MXNP), HFWA2 (MXNP)
 DIMENSION HH (MXLBHH), LBHH (MXLBHH)
 DIMENSION PERM(MXNP),PORSTY (MXNP),VISC (MXNP),DENF (MXNP)
 DIMENSION IELS (MXNE),IELNOD (MXNE,MX21),IELTYP (MXNE),
 HCEL (MXNE, 3),
 IELMAT (MXNE, 2),NDFRO (MXNE)
 WFRONT (MXNN,MXBAND), CFRON (MXNN),
 EQUAT (MXFRON), PVCOL (MXFRON),
 VECRV (MXFRON),GLOAD (MXFRON),
 NACVA (MXFRON)
 TIMEP (MXNSTP),TMPE (MXNSTP)
C
 COMMON/CNTRL1/ ICP1(40)
 COMMON/CNTRL2/ MXSTER,MXITER,DTFAC,PHERTL,TFERTL,TRERTL
 COMMON/CNTRL3/ NSTEP,ITER,TIME,DT,PHERMX,TEERMX,TRERMX
 COMMON/CNTRL4/ PHMXDT,TFMXDT,TRMXDT
 COMMON/CNTRL5/ NPSTPS,NTSTPS
 COMMON/COEFF2/ SCF,SCR,HT
 COMMON/DTMAXI/ DTMAX
 COMMON/EQSOLV/ ICPSLV(10)
 COMMON/ERRMXN/ MXEDTN(3),MXE1IN(3),MXE2IN(3)
 COMMON/FECOM1/ MXNE,NE,MXNP,NP
 COMMON/FECOM2/ MXBAND,MBAND,MXNN,NN
 COMMON/EECOM4/ NNODE,NDOF,NER,NDIM
C-----
 COMMON/GFELX1/ NELG,NELG1,NELG2,NELW,NELW1,NELW2,
 1 NPG,NPG1,NPG2,NPW,NPW1,NPW2,
 2 NELI,NELGWI,NPGWI1,NPGWI2
```

C

```
 COMMON/GFELX2/ XLGAS,XLWAT,XLGWI,XLTOT,DLSG
C-----
 COMMON/HFPLOT/ IPLOT
 COMMON/HFREFI/ PREF,TREF,HCREF,PRMREF,POREF,DNFREF,VSCREF
 COMMON/IAXSYM/ IAXSYM
 COMMON/ICPDSC/ ICPDSC(20)
 COMMON/ICPLOT/ ICPLOT(10)
 COMMON/IDTAIO/ IDTAIO
 COMMON/IDTAUO/ IDTAUO
 COMMON/IDISCR/ IDISCR
 COMMON/INEWTN/ INEWTN
 COMMON/INUN10/ INUN(10)
 COMMON/IORHC / IORHC
 COMMON/IORSLV/ IORSLV
 COMMON/ITERX / ITTERX
 COMMON/IUFRON/ IU1,IU2,IU3,IU4
 COMMON/IUNITS/ IUNIT(10)
 COMMON/LHEX21/ IEL2I
 COMMON/MISCHK/ MISCHK
 COMMON/MODPRT/ MODPRT,MPRT
 COMMON/MXLBHH/ MXLBHH
 COMMON/MXNPEL/ MX21
 COMMON/MXNSTP/ MXNSTP
 COMMON/NODPRT/ NDSPRT(100),MXNPRRT,NPRT
 COMMON/PLOTXY/ XMIN, XMAX, YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
 COMMON/PLOTTR/ IOREN,ICLOS
 COMMON/RUNMAX/ RUNMAX
 COMMON/TIME1 / TIME1
 COMMON/TITLE / TEX(20)
 COMMON/UNSAMS/ IPRUNS
C
 REAL XMIN,XMAX,YMIN, YMAX,SX,SY,XORG,YORG,DX,DY
 CHARACTER*4 TEX
 CHARACTER*6 SFRINX
 CHARACTER*6 XPROG,END1,END2
C
 DATA END1 /'END '/,END2/' END'/
C
 IUN = INUN(1)
 WRITE (6,901) IUN
 901 FORMAT (/6X,'PRGSEL---NOw begin labelled input - IUN=',I3)
C--
 10 READ (IUN, 810, END=120) XPROG, INUNX, IUMX
 810 FORMAT (A6,2I4)
 811 FORMAT (A6,I4,: I4)
C
 WRITE (6,910) XPROG,INUNX, IUTX
 910 FORMAT (/6X,A6,2I4)
 WRITE (6,911) XPROG,INUNX,IUTX
 911 FORMAT(1H+,5X,A6,2I4,' **PRGSEL***')
C
```



```
C
 IF(XPROG.EQ.END1 .OR. XPROG.EQ.END2) THEN
 GOTO 110
C--
 CALI AMINMX(XN,NP,XMIN, XMAX, IXMIN, IXMAX)
```

CALL AMINMX (YN, NP, YMIN, YMAX, IYMIN, IYMAX)

```
 ELSE IF(XPROG.EQ.'DATAIO') THEN
 IF(INUNX.LT.1 .OR. INUNX.GT.99) THEN
 WRITE (6,949) INUNX
 949 FORMAT(/6X,'PRGSEL---Error: Unit number out of range -',
 1 ' INUNX =',I3)
 ELSE
C---Call subroutine to read data from disc file
 CALL DATAIO(PH,TF,TR,DU,PERM,PORSTY,
 1
 ENDIF
C
 IDTAIO = 1
C--
 ELSE IF(XPROG.EQ.'DATAUO') THEN
 READ(IUN,851) ICPDSC
 FORMAT(20I3)
 NRITE (6,951) ICPDSC
 951 FORMAT(/6X,'PRGSEL---ICPDSC: ',20I3)
 WRITE (6,952)
 FORMAT(/6X,'PRGSEL---The following data arrays are to be',
 I ' written to disc file:')
C
 IF(ICPDSC(1).GT.0) WRITE(6,*) ' Pressure (PG)'
 IF(ICPDSC(2).GT.0) WRITE(6,*) , Fluid temperature (TF)'
 IF (ICPDSC(3).GT.0) WRITE (6,*) ' Rock temperature (TR)'
 IF(ICPDSC(4).GT.0) WRITE (5,*) , Rock displacments (DU)'
 IF(ICPDSC(5).GT.0) WRITE(6,*) , Permeability (PERM)
 IF(ICRDSC(6).GT.0) WRITE (6,*) , Porosity ',
 1
 IF(ICPDSC(7).GT.0) WRITE(6,*)
 IF(ICPDSC(8).GT.0) WRITE (6,*) , Y-coordinate (YN)'
 IF(ICPDSC(9).GT.0) WRITE (6,*), z-coordinate (ZN)'
 IF(ICPDSC(10).GT.0) WRITE(6,*) ' Nodes ',
1
 IF(ICPDSC(11).GT.0) WRITE(6,*), IELNOD ,
I
 IF(ICPDSC(12).GT.0) WRITE(6,*)', IELTYP ',
1
 IF(ICPDSC(13).GT.0) WRITE(6,*)' Element permeability',
1
 IF(ICPDSC(14).GT.0) WRITE (6,*) , Element material no',
 1
C
 IDTAUO = 1
C--
 ELSE IF(XPROG.EQ.'DRAINI') THEN
 INUN9=INUN (9)
 IF(INUNX.GT.0) INUN9=INUNX
c---Input drain data
 CALL DRAINI(IELNOD,IELTYP,XN,YN,ZN,INUN9)
```



```
 ELSE IF(XPROG.EQ.'GELIN1') THEN
C
C---Input mesh parameter data and intial gas migration conditions
 CALL GELIN1 (IELNOD,IELTYP,IELMAT,XN,YN,PH,LBPH,
```

1
TR, LBTR, $\mathrm{ZN}, \mathrm{TF} 0$, INUNX $)$
C
Here

```
XNNEW -> XN, RNEW -> PG,
```

    XNOLD \(\rightarrow\) ZN, POLD \(->\) TFO
    
C--Input parameters for parallel plate model conceptualization
and set element or nodal permeability arrays
CALL GFELHC (HCEL, PERM, INUNX)

C---Set full gas displacement at "injection" nodes
CALI GFINJI (IELNOD, NODES, XN, YN, ZN, RH,TR)

ELSE IF (XPROG.EQ.'GFRIN1') THEN
C---Input parameter data to set boundary and initial conditions
CALL GFRIN1 (NODES, PH, LBPH,TR, LBTR, XN, YN, ZN, INUNX)
C
IF (MISCHK.GT.0) THEN
CALL GFPRTI (XN,YN, ZN, PH, $\left.1, N \mathrm{~N}, \mathrm{C} \quad \mathrm{PH} \mathrm{H}^{\prime}\right)$
CALL GFRRTI (XN,YN, ZN, TR,1,NR,' TR')
ENDIF
C
WRITE $(6,945)$ NPG,NPW,NPW1

C
C---Store arrays of gas and water saturated nodes into work array
CALL HFAX1B(HH( 1), LBHH (1),TR( 1), LBTR( 1), NPG)
CALL HFAX1B (HH (NPW1), LBHH (NPW1), PH(NPW1), LBPH (NPW1), NPW)
CALL GFPRTI (XN, YN, ZN, HH, I, NP,' $\mathrm{HH}^{\prime}$ )
c
Here
PG -> TR, LBTR -> LBPG

C---Input fracture distribution data
CALL GFSEDT (INUNX)

C---Input point mass source/sinks to be applied to frontal equations
CALI GWSRCI (XN, YN, ZN, INUNX)

ELSE IF (XPROG.EQ.'HDR4BC') THEN
C---Set the initial pressure distribution (hydrostatic)
CALI HDR4BC (EH, LBPG, XN, YN, ZN)

ELSE IF (XPROG.EQ.'HFAX3A') THEN
C---Transfer nodal data from work arrays $-H H-$ and -LBHH- being read
by subr. HFNDIN* to nodal arrays. This is for cases where the
initial or boundary conditions have been set in grid data
CALL HFAX3A(HH, LBHH, PH, LBPH,TE, LBTF, TR, LBTR, NP)

C---Test for input of boundary conditions or initial values
CALL HFBCX1 (PH, LBPH, TF, LBTF, TR, LBTR,DU, LBDU,
1
$\mathrm{XN}, Y \mathrm{~N}, \mathrm{ZN}$, IELNOD, INUN (2))

```
 ELSE IF(XPROG.EQ.'HFBELT') THEN
 READ(INUNX,848,END=130) FILTEX,QFLX,ICPF
 848 FORMAT (A10,3F10.0,10I2)
 WRITE (6,948) FILTEX,QFLX,ICPF
 948 FORMAT(/6X,'HFINS1---FILTEX: ',A10,' QFLX: ',1P,3E10.3/
 1 6X,9X,'ICPE: ',10I2)
C
C---Find nodes on top boundary and set prescribed flux condition
CC CALL HFBELT(IELNOD,IELTYP,XN,YN,ZN,
C 1 IELNBL,JLB,MXNBEL,QFLX) ** set work arrays **
C---
 ELSE IF(XPROG.EQ.'HFBFLW') THEN
c---Input boundaries with prescribed flux conditions
 CALL HFBFLW(IELNOD, INUN(1), 2, IEND2)
C--
 ELSE IF(XPROG.EQ.' HFELHC') THEN
C---Set element permeability (ref.value + region specification)
 CALL HFELHC(IELNOD,IELTYP,HCEL,IELMAT,XN,YN,ZN,INUNX)
C--
 ELSE IF(XPROG.EQ.'HFELIF') THEN
 INUN8=INUN (8)
 IF(INUNX.GT.0) INUN8=INUNX
C---Input element incidences (discrete system)
 CALL HFELIF(IELS,IELNOD,IELTYP,HCEL,INUN8)
C--
 ELSE IF(XPROG.EQ.'HFELIN') THEN
 INUN8=INUN (8)
 IF(INUNX.GT.0) INUN8=INUNX
C---Input element incidences
 CALL HFELIN(IELS,IELNOD,IELTYP,HCEL,INUN8)
C-------------------------------------
 INUN6=INUN (6)
 IF(INUNX.GT.0) INUN6=INUNX
C---Specify (unsaturated) material properties for elements or nodes
 CALL HFELMP (IELNOD, IELTYP, HCEL, IELMAT,NODES,XN,YN, ZN, INUNG)
C---
 ELSE IF(XPROG.EQ.'HFELM1') THEN
C---Set element permeability according to values of -ielmat-
 CALL HFELM1 (IELNOD,IELTYP,HCEL,IELMAT,XN,YN,ZN,INUNX)
C--
 ELSE IF(XPROG.EQ.'HFELPM') THEN
 INUN6=INUN (6)
 IF(INUNX.GT.0) INUN6=INUNX
C---Specify (unsaturated) material properties for elements or nodes
 CALL HFELPM(IELNOD,IELTYP,HCEL,IELMAT,NODES,XN,YN,ZN,INUN6)
C--
 ELSE IF(XPROG.EQ.'HFELPI') THEN
c---set element porosity
 CALL HFELPI(IELNOD,IELTYP,HCEL,XN,YN,ZN)
C---
 ELSE IF(XPROG.EQ.'HFIELN') THEN
C---redefine matrix of element incidences if 8-21 node hexahedral
c element is to be used
 IF(IEL21.GT.1) CALI HFIELN(IELNOD,IELTYP)
C--
 ELSE IF(XPROG.EQ.'HFINFR') THEN
C---Input fracture elements
```

CALL HFINFR(INUN(1), INUN(4))

```
 ELSE
 END IF
C
C---B egin nestingg of IF THEN t e st--- 2-nd ------
C
 IF(XPROG.EQ.END1 .OR. XPROG.EQ.END2) THEN
 GOTO 110
C-----------------------------------
 INUN6=INUN(6)
 IF(INUNX.GT.0) INUN6=INUNX
C---Input of material properties for unsaturated conditions
 CALL HFINP3(INUN6, 0)
C--
 ELSE IF(XPROG.EQ.'HFINP4') THEN
 INUN6=INUN (6)
 IF(INUNX.GT.0) INUN6=INUNX
c---Set the initial pressure distribution (hydrostatic)
 CALI HFINP4(PH,LBPH,PERM,XN,YN,ZN,INUN6)
C------------------------------------
 INUN6=INUN (6)
 IF(INUNX.GT.0) INUN6=INUNX
c---Set the initial pressure distribution (hydrostatic)
 CALL HFIN4P (PH, LBRH,PERM,XN,YN,ZN,INUN6)
C-----------------------------------N',
 INUN7=INUN (7)
 IF(INUNX.GT.0) INUN7=INUNX
c---Input data for stress solution and input of initial
c and boundary conditions
 CALL HFINP5(IELNOD,IELTYP, XN,YN, ZN,DU, LBDU,INUN7, 0)
C--
 ELSE IF(XPROG.EQ.'HFMSRC') THEN
 IF(IUTX.GT.0) WRITE(INUN(4),811) XPROGX,INUN(4)
C---Input concentrated mass sources
 IF (IUTX.LE.0) CALL HFMSRC(INUN(1), 0, 1)
 IF(IUTX.GT.O) CALL HFMSRC(INUN(1),INUN(4), 1)
C--
 ELSE IF(XPROG.EQ.'HFNDIF') THEN
 INUN8=INUN (8)
 IF(INUNX.GT.O) INUN8=INUNX
C---Input nodal points (discrete system)
 CALL HFNDIF(NODES,XN,YN, ZN,LBHH,HH,3,INUN8)
C----------_---
 ELSE IF(XPROG.EQ.'HFNDIN') THEN
 INUN8=INUN (8)
 IF (INUNX.GT.0) INUN8=INUNX
C---Input nodal points
 CALL HFNDIN(NODES,XN,YN,ZN,LBHH,HH,3,INUN8)
C----------------------------------
C---Invoke subroutine to set nodal permeability for nodes associated
c with fractures
 CALL HFNFRC(XN,YN,ZN,PERM,NODES,INUNX)
CC<<<<< WRITE (5,920) XPROG
```

```
 920 FORMAT(/6X,'PRGSEL---',A6,': currently inactive')
C---
 ELSE IF(XPROG.EQ.'HFPERM') THEN
C---Set nodal permeabilities
 CALL HFPERM(XN,YN,ZN,PERM, INUN(10))
C---
 ELSE IF(XPROG.EQ.'HFPRMA') THEN
 IF(IMATM.EQ.1) THEN
C---Set mid-side properties (permeability) as averages
c of ajcacent corner nodes
 CALL HFPRMA (IELNOD,PERM)
 ENDIF
C---
 ELSE IF(XPROG.EQ.'HFSRC1') THEN
C---Input concentrated and/or distributed heat sources
 CALL HFSRC1 (XN,YN,ZN,DHS,IELNOD,IELTYP,INUN(2), 0)
C---------------------------------------
C---Input subroutine for pressure, permeability, porosity, etc.
 CALL HYDSBS (PH,LBPH,SW,
 1 PERM,PORSTY,VISC,DENF,NODES,
 2 XN,YN,ZN,IELNOD,IELTYP,HCEL, IELMAT,
 3 INUNX)
C---
 ELSE IF(XPROG.EQ.'MVSDEI') THEN
 READ (INUNX,*, END=130) SLOPE,CRDREF,DISX
 WRITE (6,947) SLOPE,CRDREF,DISX
 947 FORMAT(6X,'HFINS1---SLOPE=',F8.3,' CRDREF=',F8.3,
 1 ' DISX=',F11.3)
C---modify element mesh according to previous specification
 CALI MVSDE1 (XN,YN,NP,SLOPE,CRDREF,DISX)
C--
 ELSE IF(XRROG.EQ.'NODSL2') THEN
C---Specify area within which nodes are to be selected for printout
 CALL NODSL2 (XN, YN, ZN,NP, NDSPRT,MXNPRT,NPRT, INUN(2))
C---
 ELSE IF(XPROG.EQ.'NODSL4') THEN
 INUN8=INUN (8)
 IF(INUNX.GT.0) INUN8=INUNX
C---Specify and set zones of specific material properties
 CALL NODSL4(IELNOD,IELTYP,IELMAT,NODES,XN,YN, ZN, INUN8)
C--
 ELSE
 END IF
c
C---Beginn nesting of IF THEN t e st--- 3-rd------
c
 IF(XPROG.EQ.END1 .OR. XPROG.EQ.END2) THEN
 GOTO 110
C--
 ELSE IF(XPROG.EQ.'RHXMIN') THEN
C---Set prescribed pressure on left hand boundary
 CALL PHKMIN(PH,LBPH,XN,YN,'PH')
C
 ELSE IF(XPROG.EQ.'PHXMAX') THEN
C---Set prescribed pressure on right hand boundary
 CALL PHXMAX(PH,LBPH,XN,YN,'PH')
C
```

```
 ELSE IF(XPROG.EQ.'PHYMIN') THEN
C---set prescribed pressure on bottom boundary
 CALL PHYMIN(PH,LBPH,XN,YN,'PH')
c
 ELSE IF(XPROG.EQ.'PHYMAX') THEN
C---Set prescribed pressure on top boundary
 CALL PHYMAX(PH,LBRH,XN,YN,'RH')
C--
 ELSE IF(XPROG.EQ.'PHYDRO') THEN
c---Call subroutine to input data for hydrostatic boundary conditions
 CALL PHYDRO(XN,YN, ZN,PH,LBPH,TF,LBTF,TR,LBTR,INUNX)
C--
 ELSE IF(XPROG.EQ.'SELNDS') THEN
C---Input node numbers for selected printout of nodal data
 CALI SELNDS(INUN(2))
C---
 ELSE IF(XPROG.EQ.'SFRINI') THEN
 INUN6=INUN (6)
 IF(INUNX.GT.0) INUN6=INUNX
C---Set boundary and initial conditions for 1-d gas flow test
 CALL SFRIN1 (NODES,PH,IBPH,TR,LBTR,XN,YN,ZN,INUN6, 0)
C--
 ELSE IF(XPROG.EQ.'SHWTIN') THEN
C---Input the time dependent energy output for hydrocoin 12,c2
 CALL SHWTIN(INUNX)
C--
 ELSE IF(XPROG.EQ.'TFXMIN') THEN
C---Set prescribed temperature on left hand boundary
 CALL PHXMIN(TF,LBTF,XN,YN,'TF')
C
 ELSE IF(XPROG.EQ.'TFXMAX') THEN
C---Set prescribed temperature on right hand boundary
 CALL PHXMAX(TF,IBTF,XN,YN,'TF')
C
 ELSE IF(XPROG.EQ.'TFYMIN') THEN
C---Set prescribed temperature on bottom boundary
 CALL PHYMIN(TF,LBTF,XN,YN,'TF')
C
 ELSE IF(XPROG.EQ.'TFYMAX') THEN
c---set prescribed temperature on top boundary
 CALL PHYMAX(TF,LBTE,XN,YN,'TF')
C--
 ELSE
 WRITE (6,960)
 960 FORMAT(/6X,'PRGSEL---Error: Invalid label')
 END IF
C--
 GOTO }1
C---
 110 WRITE (6,980)
 980 FORMAT (/6X,'PRGSEL---NOW read end labe1')
 RETURN
C--
 120 WRITE (6,990) IUN
 990 FORMAT(6X,'PRGSEL---NOW read to end of file=',I3)
 RETURN
```

130 WRITE $(6,990)$ INUNX RETURN

### 3.2.2.3 Description of user controlled subroutines

```
************************* A M I N M X *********************************
Command:
 AMINMX 00 00 <Optional text>
Purpose:
 To find the minimun resp. maximum coordinates of current element
 grid.
 This command is usually used in conjunction with some other
 operation which requires that the extreme coordinate values be
 known.
The following call is made:
 CALL AMINMX (XN,NP,XMIN, XMAX, IXMIN, IXMAX)
 CALL AMINMX (YN,NP,YMIN,YMAX,IYMIN, IYMAX)
```


## Command:

DATAIO IU 00 <Optional text>

## Purpose:

To impose a call to subroutine *DATAIO* to read solution data, coordinates of element grid, element incidences, etc. from disc file IU.

The following call is made:
CALI DATAIO (PH,TF,TR,DU, PERM, PORSTY, XN, YN, ZN, NODES, IELNOD, IELTYP, HCEL, IELMAT, IUNIX)

Control options are stored in the following common block: COMMON/ICPDSC/ ICPDSC(20)

Control options for variables that may be written or read from disk
Option Variable
1 PH - Pressure
2 TF - Fluid temperature
3 TR - Rock temperature Gas pressure

4 DU - Rock displacement
5 PERM - Permeability
6 PORSTY - Porosity
7 XN - X-coordinates
8 YN - Y-coordinates
9 ZN - Z-coordinates

10 NODES - Node numbers Node material numbers

11 IELNOD - Element connectivity matrix

```
 12 IELTYP - Element type array
 13 HCEL - Element permeability
 I4 IELMAT - Element material numbers
 Below follows the subroutine used:
 SUBROUTINE DATAIO(PH,TF,TR,DU,PERM,PORSTY,
 1
2
 XN,YN,ZN,NODES,
 IELNOD, IELTYP,HCEL,IELMAT,INUN)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION PH(*),TF(*),TR(*),DU(MXNP,*),
 1
 2
 3 IELNOD (MXNE,*), IELTYP (*),HCEL (MXNE,*),
 4 IELMAT (MXNE,*)
 COMMON/FECOM1/ MXNE,NE,MXNP,NP
 COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
 COMMON/ICPDSC/ ICPDSC(20)
 COMMON/IUNITS/ IUNIT(5)
 COMMON/MXNPEL/ MX21
 READ(IUNIT(1)) NSTEP,TIME,DT,NE,NP,MXNDE,NDOF,NDIM,ICPDSC
 WRITE (6,910) IUNIT(1),NSTEP,TIME,DT,NE,NE,MXNDE,NDOF,NDIM,ICPDSC
910 FORMAT (/6X,'DATAIO---NOW to read data on disc file: ',I2/
 1 6X,9X,'NSTEP=',I3,' TIME=',1P,E10.3,' DT=',E10.3/
 2 6X,9X,'NE=',I4,' NP=',I4,' MX21=',I2,' NDOF=',I1,
 3 ' NDIM=',II/
 4 6x,9X,'ICPDSC: ',20I2)
 IF (MXNDE.GT.MX21) THEN
 WRITE (6,915) MXNDE,MX21
 FORMAT(/6X,'DATAIO---Warning: MXNDE=',I2,' > MX21=',I2,' which'/
 6X,9X,' means that',
 ' the second dimension in IEINOD (MXNE,MX21)'/
 6x,9x,'may be too small for current input data.'/
 6X,9X,'Increase second dimension to be sure that',
 ' there is enough space.')
 ENDIF
 IF(NP.GT.MXNP) THEN
 WRITE (6,920) NP,MXNP
920
 l
 1 6X,9X,'NP=',I4,' > MXNP=',I4,' STOP')
 FORMAT(/6X,'DATAIO---Insufficient length of nodal arrays:'/
 STOR
 ENDIF
 IF(NE.GT.MXNE) THEN
 WRITE (6,925) NE,MXNE
925
 1 6X,9X,'NE=',I4,' > MXNE=',I4,' STOP')
 FORMAT(/6X,'DATAIO---Insufficient length of element arrays:'/
 STOR
 ENDIF
 IF(ICPDSC(1).EQ.1)
 1 CALL READX(PH,NP,INUN,IENDX)
 IF(ICPDSC(2).EQ.1)
 1 CALI READK(TE,NP,INUN,IENDK)
```

```
 IF(ICRDSC (3).EQ.1)
 I CALL READX(TR,NP,INUN,IENDX)
 IF(ICPDSC(4).EQ.1) THEN
 DO }10\mathrm{ IDIM=1,NDIM
 CALL READX(DU (1,IDIM),NP,INUN,IENDX)
1 0
 CONTINUE
 ENDIF
 IF(ICPDSC(5).EQ.1)
 1 CALI READX(PERM,NP,INUN,IENDX)
 IF (ICPDSC (6).EQ.1)
 1 CALL READX(PORSTY,NP,INUN,IENDX)
 IF(ICPDSC (7).EQ.1)
 1 CALL READX(XN,NP,INUN,IENDX)
 IF(ICPDSC(8).EQ.1)
 1 CALL READX(YN,NP,INUN,IENDX)
 IF(ICPDSC(9).EQ.1)
 1 CALL READX(ZN,NE,INUN,IENDX)
 IF (ICPDSC(10).EQ.1)
 1 CALL READY(NODES,NP,INUN,IENDX)
 IF(ICPDSC(11).EQ.1) THEN
 DO 20 IX=1,MXNDE
 CALL READY(IELNOD (1,IX),NE,INUN,IENDX)
2 0
 CONTINUE
 ENDIF
 IF(ICPDSC (12).EQ.1)
 1 CALL READY(IELTYP,NE,INUN,IENDX)
 IF(ICPDSC(13).EQ.1) THEN
 DO 30 IDIM=1,NDIM
 CALL READX(HCEL(1,IDIM),NE,INUN,IENDX)
 CONTINUE
 ENDIF
 IF(ICRDSC(14).EQ.1) THEN
 CALL READY(IELMAT (1,1),NE,INUN,IENDX)
 CALI READY(IELMAT (1, 2),NE,INUN,IENDX)
 ENDIF
 RETURN
 END
```

Command:
DATAUO IU 00 <Optional text>
Purpose:
To write solution data, coordinates, element incidences, etc.
to a disc file.
COMMON/ICRDSC/ ICPDSC(20)
Control options for variables that may be written or read
from disc:

```
Option Variable
 I PH - Pressure
 2 TF - Fluid temperature
 3 TR - Rock temperature
 Gas pressure
 DU - Rock displacement
 PERM - Permeability
 PORSTY - Porosity
 XN - X-coordinates
 YN - Y-coordinates
 ZN - z-coordinates
 NODES - Node numbers
 Node material numbers
 IELNOD - Element connectivity matrix
 IELTYP - Element type array
 HCEL - Element permeability
 IELMAT - Element material numbers
Below follows the subroutine used:
SUBROUTINE DATAUO(PH,TE,TR,DU,PERM,PORSTY,
 XN,YN, ZN,NODES,
 IELNOD,IELTYP,HCEL, IELMAT,INUN)
 IMPLICIT DOUBLEPRECISION(A-H,O-Z)
 DIMENSION PH(NP),TF(NP),TR(NP),DU(MXNP,*),
 1 PERM(NP),PORSTY(NR),
2 XN(NP),YN(NP),ZN(NP),NODES (NP),
3 IELNOD (MXNE,*),IELTYP (NE),HCEL (MXNE,*),
4 IELMAT (MXNE, *)
COMMON/FECOM1/ MXNE,NE,MXNP,NP
COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
COMMON/ICRDSC/ ICPDSC(20)
COMMON/IUNITS/ IUNIT(5)
COMMON/MXNPEL/ MX21
WRITE (6,910) IUNIT(1),NSTEP,TIME,DT,NE,NP,MX21,NDOF,NDIM,ICRDSC
910 FORMAT(/6X,'DATAUO---NOw to write data on disc file: ',I2/
1 6X,9X,'NSTEP=',I3,' TIME=',1P,E10.3,' DT=',E10.3/
2 6X,9X,'NE=',I4,' NP=',I4,' MX21=',I2,' NDOE=',I1,
 ' NDIM=',Il/
 6X,9X,'ICPDSC: ',20I2)
WRITE(IUNIT(1)) NSTEP,TIME,DI,NE,NP,MX21,NDOF,NDIM,ICPDSC
IF(ICPDSC(I).EQ.1) WRITE(INUN) PH
IF(ICPDSC(2).EQ.1) WRITE(INUN) TF
IF(ICPDSC(3).EQ.1) WRITE(INUN) TR
```

```
 IF(ICPDSC(4).EQ.1) THEN
 DO 10 IDIM=1,NDIM
 CALL WRITEX(DU(1,IDIM),NP,INUN)
1 0
 CONTINUE
 ENDIF
 IF(ICPDSC(5).EQ.1) WRITE(INUN) PERM
 IF(ICPDSC(6).EQ.1) WRITE(INUN) PORSTY
 IF(ICPDSC(7).EQ.1) WRITE(INUN) XN
 IF(ICPDSC(8).EQ.1) WRITE(INUN) YN
 IF(ICPDSC (9).EQ.1) WRITE(INUN) ZN
 IF(ICPDSC(10).EQ.1) THEN
 CALL WRITEY(NODES,NP,INUN)
 ENDIF
 IF(ICPDSC(11).EQ.1) THEN
 DO 20 IX=1,M\times21
 CALL WRITEY(IELNOD (I,IX),NE,INUN)
 CONTINUE
 ENDIF
 IF(ICPDSC(12).EQ.1) WRITE (INUN) IELTYP
 IE(ICPDSC(13).EQ.1) THEN
 DO 30 IDIM=1,NDIM
 CALL WRITEX(HCEL(1,IDIM),NE,INUN)
 CONTINUE
 ENDIF
 IF(ICPDSC(14).EQ.1) THEN
 CALL WRITEY(IELMAT (1,1),NE,INUN)
 CALL WRITEY(IELMAT (1,2),NE,INUN)
 ENDIF
 RETURN
 END
 **************************** D R A I N I
Command:
 DRAINI IU 00 <Optional text>
Purpose:
 Input drain data
The following call is made:
 CALL DRAINI (IELNOD,IELTYP,XN,YN,ZN,INUN9)

************************** G E L I N 1
Command:
GELIN1 IU 00 <optional text>
Purpose:
```

The following call is made:
GELIN1 (IELNOD, IELTYO, IELMAT, XN, YN, PH, LBPH,TR,LBTR, ZN,TFO, INUNX)

```
*********************** G
```

Command:
GFELHC IU 00 <Optional text>

## Purpose:

Input parameters for parallel plate model conceptualizations and set element or nodal permeability arrays.

The following call is made:
CALL GFELHC (HCEL,PERM, INUNX)

G FINJI
Command:
GFINJ1 0000 <Optional text>
Purpose:
Set gas displacement at "injection" nodes a ccording to a given saturation (currently $S=0.8$ ).

The following call is made:
CALL GEINU1 (IELNOD, NODES,XN,YN, ZN, PH,TR)

The subroutine checks the capillary pressure corresponding to the specified saturation.
The gas pressure at injection nodes are adjusted such that

$$
P_{g}=D_{w}+D_{c}
$$

where $P_{g}$ is the gas pressure, $P_{1}$ is water pressure and $p$ is the capillary pressure.

```
********************** G F R I N 1 *******************************
Command:
 GFRIN1 IU 00 <Optional text>
Purpose:
 To input parameter data for setting boundary and initial conditions
 for "SFR-Gas flow problem".
The following call is made:
 CALL GELINI(IELNOD,IELTYP,IELMAT,XN,YN, PH, LBPH,
 TR,LBTR, ZN,TFO,INUNX)
 Below follows the subroutine used:
 SUBROUTINE GFRIN1 (NODES,PH, LBPH, PG, LBPG,XN, YN, ZN, IUN,IUT)
 IMPIICIT DOUBLE PRECISION (A-H,U-Z)
 DIMENSION NODES (MXNP),PH (MXNP), LBPH (MXNP),
1 PG(MXNP),LBPG (MXNP),
2 XN (MXNP),YN (MXNP),ZN (MXNP)
```

```
 COMMON/FECOM1/ MXNE,NE,MXNP,NE
 COMMON/FECOM4/ NNODE,NDOF,NER,NDIM
 COMMON/GAS3 / SLIR(3),SGR(3)
 COMMON/GRVTYI/ GRVTY1(3)
 COMMON/HFREF1/ PREF,TREF,HCREF,PRMREF,POREF,DNFREF,VSCREF
 COMMON/HGCUSH/ HG,HS
 COMMON/IOPBC1/ IOPBC1(10)
 READ (IUN,) IPRT,YMN,PMN,YMX,PMX,HG,HS
 READ(IUN,802) (IOPBC1(I),I=1,10)
802 FORMAT (10I2)
 WRITE (6,925) IPRT,YMN,PMN,YMX,PMX,HG,HS,
 1 (IOPBC1 (I), I=1,10)
925 FORMAT (/6X,'IPRT=',I1/
 2 6x,9X,'Parameters transferred to *PRMSEI*'/
 3 6X,9X,'YMN=',F8.2,' PMN=',F7.2,' YMX=',F8.2,' PMX=',F7.2/
 4 6X,9X,'Thickness of Gas Cushion (HG) =',F6.1,' Metres'/
 5 6X,9X,'Depth to Sea Bottom (HS) =',F6.1,' Metres'/
 6 6X,9X,'IOPBC1:',10I2)
 Check if gravity is to be accounted for and set control parameter
 IF (GRVTY1 (1).NE.0..OR.GRVTY1 (2).NE.O.OR.GRVTY1 (3).NE.O.) THEN
 IOPG=1
 ELSE
 IOPG=0
 ENDIF
 WRITE(6,910) IOPBC1,IORG
910 FORMAT(1H1//6X,'GFRIN1---Boundary and Initial Conditions for',
 1
 ' "SFR Gas Flow Problem"'/
 /6X,9X,'IOPBC1:',10I2,' IOPG=',I1)
 Find extreme values of coordinates of the flow domain
 CALL DMINMX(XN,NP,XMIN,XMAX,IXMIN, IXMAX)
 CALL DMINMX (YN,NP,YMIN,YMAX,IYMIN, IYMAX)
 PA = PREF
 G = 9.81
 DENF = DNFREF
 Check thickness of flow domain
 IF(IOPG.EQ.O) THEN
 H=0.0
 ELSE IF(NDIM.EQ.1) THEN
 H=XMAX-XMIN
 ELSE IF(NDIM.EQ.2) THEN
 H=YMAX-YMIN
 ENDIF
 set initial hydrostatic pressure distribution in the water
 as well as the gas phase
 IF(NDIM.EQ.1) THEN
 CALL GFSET1 (XN,PH,PG,G,HS,XMAX)
 ELSE IF(NDIM.EQ.2) THEN
 CALL GFSET1(YN,PH,PG,G,HS,YMAX)
 ENDIF
Begin loops to find nodes on bottom and top and to set the
 boundary conditions at the nodes found
 TOL=0.001
```

```
 Deal with the bottom boundary (icpbc (3)=1)
 IF(IOPBCI(3).EQ.1) THEN
 IF(IOPG.EQ.0) THEN
 COEFF= PA + DENF*G*(HG)
 ELSE IF(IORG.EQ.I) THEN
 COEFF= PA + DENF*G* (H+HS+HG)
 ENDIF
 Gas cushion pressure
 COEFF=DENF*G*HG
 WRITE (6,920) COEFF,HG
920
 FORMAT(/6X,'GFRIN1---Pressure of Gas Cushion=',12,E10.3/
 1 6X,9X, 'Height of Gas Cushion =',E10.3)
 Begin loop to set b.c. at bottom boundary
 DO 30 I=1,NP
 IF(NDIM.EQ.1 .AND. XN(I).GT.XMIN+TOL) GOTO 30
 IF(NDIM.EQ.2 .AND. YN(I).GT.YMIN+TOL) GOTO 30
 Add gas cushion pressure at bottom node
 PG(I)=PG(I) + COEFF
 LBPG(I)=1
 Set prescribed water pressure according to capillary curve
 at irreducible water saturation (slir)
 CALL HFNSW5 (NODES(I),PC,SLIR(1))
 PH(I)=PG(I)-PC
 LBPH(I)=1
 WRITE (6,930) I, LBPG(I),I,PG(I),I,LBPH(I),I,PH(I)
930 FORMAT (6X,'GFRIN1---Bottom NOde: LBPG(',I3,')=', I1,
 1 ' PG(',I3,')=',1P,E10.3:/
```



```
 WRITE(6,931) NODES(I),SLIR,PC
931 FORMAT(6X,9X,'Material No:',I3,
 1 ' Irred. water sat.=',3F5.2,' PC=',1P,E10.3)
30 CONTINUE
 ENDIF
 IF(IOPBC1 (4).EQ.1) THEN
 Deal with the top boundary (ICPBC(4)=1)-------------------------------------
 IF(IOPG.EQ.O) THEN
 COEFF= PA
 ELSE IF(IOPG.EQ.1) THEN
 Atmoshperic pr. + sea
 COEFF= PA + DENF*G*HS
 ENDIF
 Begin loop to set B C. on top boundary--------------------------------------
 DO 50 K=1,NP
 I=K
 IF(NDIM.EQ.1 .AND. XN(I).LT.XMAX-TOL) GOTO 40
 IF(NDIM.EQ.2 .AND. YN(I).IT.YMAX-TOL) GOTO 40
 Set top node
 PH(I) = COEFF
 LBRH(I) = 1
 PG(I) = PH(I)
 LBPG(I) = 1
 WRITE (6,940) I,LBPG(I),I,PG(I),I,LBPH(I),I,PH(I)
940
 FORMAT(6X,'GFRIN1---TOP NOde: LBRG(',I3,')=',II,
 l 6 6 (PG(',I3,')=',IP,E10.3:/'
4 0 ~ C O N T I N U E ~
5 0 ~ C O N T I N U E ~
```

ENDIF

```
 WRITE (6,950)
950 FORMAT(/6X,'GFRIN1---Boundary and initial conditions for',
 1
 WRITE (6,960) PA,H,HS,HG,DENF,G
960 FORMAT (6X,9X,'Parameter values:'//
 1 6X,9X,'Atmospheric Reference Pressure :',1P,E10.3/
 2 6X,9X,'Thickness of Aquifer (Rock) :',1P, E10.3/
 3 6X,9X,'Depth to See Bottom :',1P,E10.3/
 4 6X,9X,'Thickness of Gas Cushion :',1P,E10.3/
 5 6X,9X,'Fluid Density :r,1P,E10.3/
 6 6X,9X,'Acceleration of Gravity :',1P,E10.3)
 WRITE (6,990)
990 FORMAT (/6X,'GFRIN1---NOw to REIURN')
 RETURN
 END
 Description of parameters
 IOPBC1 - Array for control option of B.C.
 settings
 IOPBC1(3)=1 set B.C. on bottom
 boundary
 IOPBCI(4)=1 set B.C. on top boundary
 IOPG - Gravity control paramter
 IOPG=0 no gravity
 IOPG=1 gravity
 PA - Atmospheric reference pressure
 H - Thickness of aquifer (rock)
 HS - Depth to see bottom
 HG - Thickness of gas cushion
 DENF - Fluid censity
 G - Acceleration of gravity
 Note that HG,HS and iopbci are currently
 input by subroutine *hfinp4*
 ************************* G F S E D T *******************************
 Command:
 GFSEDT IU JU <Optional text>
 Purpose:
 Input fracture distribution data for parallel plate or capillary
 tube conceptualization of the rock mass.
 The following call is made:
 CALL GFSEDT (INUX)
```

```
Record 1 Optional text
 READ(INUN, 801, END=30) TEX
 801 FORMAT (18A4)
Record 2 Cavern width and fracture spacing
 READ (INUN, * ,END=30) CAVWID,FRSP,NFRI,IOPTRN
 CAVWID is cavern width
 FRSP is the fracture spacing
 NFPI is the number of fracture classes
 IORTRN is an integer control parameter to indicate if
 subsequent input parameter are to be
 transformed
 from bulk parameters values into equivalent frac-
 ture parameter values
 = O Indicates that fracture distribution data areis
 to be input directly without any transformation
 = 1 Equivalent fracture parameters to be calculated
 for capillary tube conceptualization of the
 rock mass
 = 2 Equivalent fracture parameters to be calculated
 for parallel palts conceptualization of the
 rock mass
 The subsequent input is dependent on
 the input value of IOPTRN.
 FOr IORTRN = 0 :
 DO 10 I=1,NFRI
 READ (INUN, * ,END=40) IFRI,FRWIDI(I),
 1
 PFRI(I),CFRI(I),QFACI(I)
 10 CONTINUE
```

```
 FOR IOPTRN = 1 OR 2:
 IF(IOPTRN.EQ.1 .OR. IOPTRN.EQ.2) THEN
Record 3 (free format)
 READ (INUN, *) (RPERM(I),XLCAVI(I),I=1,NERI)
 FOr IOPTRN.EQ.1 :
 Equivalent parameters for capillary tube
 conceptualization to be computed
 DO 20 I=1,NFRI
 CALI PPRORI(RPERM(I),FRSP,CAVWID,XLCAVI(I),
 1 XNF,FRWID,FRPERM,PORI,
 2 FRWIDI(I),PFRI (I),CFRI (I))
 QFACI(I)=CFRI(I)*RI*FRWIDI(I)**2/4.
 20 Continue
 FOr IOPTRN = 2 :
```

```
 Equivalent parameters for parallel plate
 conceptualization to be computed
 DO 22 I=1,NFRI
 CALL PPROP1(RPERM(I),FRSP,CAVWID,XLCAVI(I),
 CFRI (I),FRWIDI(I),PFRI(I),PORI,
 DTUBE,FRD,XNDF)
 QFACI(I) = CFRI(I)*CAVWID*FRWIDI(I)
 CONTINUE
```

        22
        QFACI -Array for multiplication factors to compute the
                        total gas flow for repective fracture class
        \(Q_{\text {fac(1) }}=n_{f(1)} * L_{c} * b\)
        \(Q_{10 t}=\sum_{i=1}^{n} Q_{\operatorname{fr}(1)}{ }^{*} Q_{\operatorname{tac}(1)}\)
            where
                \(n \quad\) is total number of fracture categories
            \(n_{\text {lac( })}\) is the number of fractures
                in fracture class(i)
            \(L_{c} \quad\) is the cavern width
            b is fracture width
            \(Q_{r(1)} \quad\) is the flux per unit area of
                fracture class(i)
            Q(ac(1) is the multiplication factor
                to relate flux per unit area to the total flux
                        for fracture category
    ```
************************** G W S R C I *****************************
```

Command:
GWSRCI IU 00 Input mass sources
Purpose:
To impose a call to subroutine *GWSRCI* to input mass sources.
The input is stored in the two arrays as indicated below and
transferred through a common block to the subroutine *GWSRCI*.
This subroutine is called upon by the front solver each time a
nodal variable is to be eliminated to check if there is any mass
source associated with the node.
Free format:
Record 1 NLOAD is the number of mass sources to be input
Record 2 READ (INUN, * ) (IWLOAD (I), GNLOAD (I), I=I,NLOAD)
IWLOAD (I) is node number
GWLOAD (I) is the mass source strength
at the corresponding node
The following subroutine call is made:
CALI GWSRCI (XN, YN, ZN,IU)
******************** H D R 4 B C

```
Command:
 HDR4BC IU 00 <Optinal text>
Purpose:
 Set the inital pressure distrbution (hydrostatic)
 The flow domain is the area located between two circles
 one is an inner circle with radius RMIN and the other is
 an outer circle with the radius RMAX.
 FOr IOPR=1 :
 Nodes along the inner radius of the flow domain are to be
 prescribed.
 FOr IOPR=2
 Nodes along the outer radius of the flow domain are to be
 prescribed.
The following call is made:
 CALI HDR4BC (PH,LBPH,XN,YN,ZN)
Command:
 HFAX3A 00 00 + Optional text
Purpose:
 To transfer the boundary conditions as input together with the
 coordinates of the nodal points and stored in the -HH- and -LBHH-
 into the work arrays for pressure -PH- and encoded boundary
 conditions -LBPH-, for fluid temperatures -TF- and encoded
 boundary conditions -IBTF- and rock temperatures -TR- and encoded
 boundary conditions -LBTR. The array for rock temperature is
 used for gas pressure if gas migration is solved for.
The following call is made:
 CALL HFAX3A(HH,LB,PH,LBPH,TF,LBTF,TR,LBTR,NP)
The following program statements are executed for this call:

 ENTRY HFAX3A(HH,LB,PH,LBPH,TF,LBTF,TR,LBTR,NP)
 DO }100\textrm{I}=1,N
 LBPH(I) = LB((I-1)*3+1)
 PH(I) = HH((I-1)*3+1)
 LBTF(I) = LB((I-1)*3+2)
 TF(I) = HH((I-1)*3+2)
 LBTR(I) = LB((I-1)*3+3)
 TR(I) = HH((I-1)*3+3)
 100 CONTINUE
Command:
 HFBCX1 IU JU Optional text
Purpose:
 To modify element mesh, to set boundary and initial conditions,
 etc.
```



IOP=3	Indicates that subroutine HFBCI3 is to be called. This
	subroutine is used to set a linear variation of pres-
	sure, fluid temperature or rock temperature. The fol-
	lowing operations are performed:
	IN $=$ NODES(I)
	LB(JN) $=$ ICODE

## Subroutine BND2DN

Subroutine to identify and set values for the top and bottom boundary nodes. The top boundary is assumed to be horizontal or linearly sloping.

## Variables:

$\operatorname{VARY}(I)$ - Value which specifies the slope of the top boundary (=SLOPE), i.e.

$$
Y=\operatorname{VARY}(1) /(\operatorname{XMAX}-X M I N)^{*}
$$

$$
(X-X M I N)+Y M A X
$$

VARY(2) - Value to be assigned to the nodes on the top boundary.
$\operatorname{VARY}(3)$ - Value to be assigned to all nodes on the bottom boundary.
ICODE - Code to set type code for nodes on a boundary
= 0 Free variable
= 1 Prescribed variable
Note: Currently ICODE is used according to the following
$=1$ Locate and prescribe values on top boundary
$=2$ Locate and prescribe values on bottom boundary
$=3$ Locate and prescribe values on both top and bottom boundaries

Command:
HEBELT
Purpose:
Find nodes on top boundary and set prescribed flux condition
Two auxiliary subroutines NODREF to setup nodal definitions for the element sides and ELMREF are called to find all element sides located along the exterior boundary. As a result of these two subroutines one obtains an array containing the element number and the element side number for the respective element side. This array is then used to identify the nodal points along the exterior boundary Currently, the nodes along the top boundary are located by checking the coordinates along the exterior boundary against the maximum coordinates of the element mesh. However, more complex criteria could easily be incorporated to select nodes along a boundary of a flow domain of more complex boundary shapes. Currently, two-d elements are assumed to be 8 -node quadrilaterals and $3-d$ elements are assumed to be 8 -node hexahedral elements.

The following call is made:
CALL HFBELT (IELNOD, IELTYP, KN, YN, ZN, IELNBL, JLB, MXNBEL, QFLX)
where
JBL - Array for elements along the boundary
JLB(NBEL,I) is the element number
JBL (NBEL, 2) is the side number of current element
MXNBEL - Maximum permitted number of elements along the exterior boundary that can be treated
NBEL - Current number of elements along the boundary

```
 IELNBL - A work matrix whose first index must be at least
 equal
 to the total number of elements, and whose second
 index must be at least equal to }8\mathrm{ for
 quadri-lateral
 elements and 26 for hexahedral elements
 JLFLX - An array for elements along the boundary subject
 to
 prescribed flux
 JLSIDE - A concurrent array for element side numbers of the
 elemente considered in the previous array
 Currently a simple routine is used for selecting boundary sides:
 NOD T ST - Subroutine to check if an element side
 is to be included
 SUBROUTINE NODTST (X,Y,Z,*)
 IMPLICIT DOUBLE PRECISION
 COMMON/EXTRE2/ XMN, XMX, YMN, YMX, ZMN, ZMX
 IPRT=0
 IF(IPRT.GT.0) WRITE (6,900) X,Y,Z
 900 FORMAT (/6X,'NODTST---X=',F8.3,' Y=',F8.3,
 , Z=',F8.3,' Now entered')
 IF(IPRT.GT.0) WRITE (6,910) XMN, XMX, YMN, YMX, ZMN, ZMX
 910 FORMAT (6X,9X,' XMN=',F8.3,' XMX=',F8.3,
 1 ' YMN=',F8.3,' YMX=',E8.3/
 2 6X,9X,'ZMN=',E8.3,' ZMX=',F8.3)
 IF(X.LT.XMN .OR. X.GT.XMX) RETURN1
 IF(Y.IT.YMN .OR. Y.GT.YMX) RETURNI
 IF(Z.IT.ZMN .OR. Z.GT.ZMX) RETURN1
 IF(IPRT.GT.0) WRITE (6,930)
930 FORMAT (6X,9X,'Point was included')
 RETURN
 END
*********************** H F B F L W *********************************
Command:
 HFBFLW IU JU Optional text
Purpose:
 To specify element boundaries subject to prescribed flux
 etc.
The following call is made:
 CAIL HFBFLW(IEINOD, INUN(1), 2, IEND2)
Below follows a description of the input data for subroutine HFBELW
```



```
 flux boundary conditions (subroutine
 HFBELW*)
Cols Format Identifier Explanation
1-5 I5 IEI Element having a side subject to pres-
 cribed flux.
```

```
6-10 I5 ISIDE Local number of the element side under
 consideration.
 The following definition applies:
11-15 I5 NDS4(1) Node in the global numbering system speci-
 fying the I:st corner of the element side
 under consideration.
 Node in the global numbering system speci-
 fying the 2:nd corner of the element side
 under consideration.
21-25 I5 NDS4(3) Node in the global numbering system speci-
fying the 3:rd corner of the element side
under consideration.
Node in the global numbering system speci-
fying the 4:th corner of the element side
under consideration.
31-40 F10.0 QFLX1 Flux component in the x-direction
41-50 F10.0 QFLX2 Flux component in the y-direction
41-50 F10.0 QFLX2 Flux component in the z-direction
Note: If no data are to be input to this data set insert a record
 containing -1 in columns 1-2.
 Both IEI and ISIDE may be set equal to zero provided that
 the four corner nodes are given by NDS4. Alternatively, the
 array for the corner nodes may be zeroed provided that IEL
 and ISIDE are properly specified.
Command:
 HFELHC IU 00 <Optional text>
Purpose:
 Set element permeability (ref.value + region specification)
The following call is made:
 CALL HFELHC (IELNOD,IELTYP, HCEL, IELMAT,XN,YN,ZN,INUNX)
The following program statements will be executed for this call:
 READ (INUN, 810, END=120) XF1,XF2,YF1,YF2, ZF1, ZF2,FRPERM,IMAT
810 FORMAT (7F10.0,I3)
 IE(FRPERM.EQ.O.) FRPERM=1.0
Begin main l loop over elements-m--------
DO 100 IEI=1,NE
 LTYPE=IELTTYP(IEL)
 MXNDE=LNTYP(1, IELTYP(IEL))
Mean depth of current element
set parameter indicating the number of corner nodes of current
element, 8 for the standard hexahedral element (ITYPE=11) and f for
the prismatic element (ITYPE=12)
 NCRN=8
 IF(LTYPE.EQ.12) NCRN=6
 J=0
 XP=0.0
 YP=0.0
 ZP=0.0
```

```
 Begin loop over nodal points of current element----------------------------
 this loop is used to set permeability as a function of the
 DO 40 JJ=1,MXNDE
 JN=ABS (IELNOD (IEL,JJ))
 IF(JN.EQ.O) GOTO 40
 J=J+1
 IF(J.GT.NCRN) NOD9(J-NCRN)=JJ
 XYZ (1,J)=XN(JN)
 XYZ (2,J)=YN(JN)
 XYZ (3,J) =ZN(JN)
 XP=XP + XN(JN)
 YP=YP + YN(JN)
 ZP=ZP + ZN(JN)
 CONTINUE
 NNODE=J
 DEPTH=FDRTH2(XYZ)
 CFAC=FUNHC2 (IEL,DEPTH)
 HCEL (IEL, 1)=PRMREF*CFAC*FHCX
 HCEL (IEL, 2) =PRMREF*CFAC*FHCY
 HCEL (IEL, 3)=PRMREF*CFAC*FHCZ
 Check if the centroid (XP,YP,ZP) of current element is located
 within the interval XF1< X <XF2, YF1< Y <YF2, ZF1< Z <ZF2
 XP=XP/J
 YP=YP/J
 ZP=2P/J
 IF(XP.LT.XF1 .OR. XP.GT.XF2 .OR. YP.LT.YF1
 I
 IF(NDIM.EQ.2) GOTO 70
 IF(ZR.LT.ZF1 .OR. ZR.GT.ZF2) GOTO 80
 7 0 ~ C O N T I N U E
 HCEL(IEL, 1) = HCEL (IEL, 1)*FRPERM
 HCEL (IEL, 2)=HCEL (IEL, 2)*FRPERM
 HCEL (IEL,3)=HCEL (IEL, 3)*FRPERM
 IF(IMAT.GT.0) IELMAT(IEL,1)=IMAT
 IF(IPRT.EQ.0) GOTO }8
 WRITE(6,945) IEL,HCEL(IEL,1),IEL,HCEL(IEL,2),IEL,HCEL(IEL,3)
 FORMAT (/ 6X,' HFELHC-HCEL(', I3,', 1)=',1P,E9.3,
 ' HCEL (', I3,', 2)=',1P,E9.3,' HCEL(',I3,', 3)=',1P,E9.3)
 WRITE (6,946) XP,YP,ZP,J,MXNDE
946 FORMAT(6X,'HFELHC-XP=',F8.2,' YP=',F8.2,' ZP=',E8.2,
 1
 80 CONTINUE
100 CONTINUE
```

Where the interval is defined as:
$\mathrm{XF} 1<\mathrm{X}<\mathrm{XF} 2$ : range in X -direction
YF1 < Y < YF2: range in Y-direction
ZF1 < Z < ZF2: range in $Z$-direction

FRPERM is a multiplication factor for permeability IMAT is the material number

Command:
HFELIF IU 00 <Optional text>
Purpose:
Input element incidences (discrete system)
This is an alternative version of HFELIN.
The following call is made:
CALL HFELIF (IELS, IELNOD, IELTYP, HCEL, INUNB)

```
Command:
 HFELIN IU JU Optional text
Purpose:
 To input element incidences
The following call is made:
 CALI HFELIN(IELS,IELNOD,IELTYP,HCEL,INUN8)
 Below follows a description of the input data for this subroutine
--------------------Element incidences (*HFELIN*, which is an
 alternative entry to subroutine *HFNDIN*)
Cols Format Identifier Explanation
--
1-5 I5 II Element number
6-10 I5 LTYPE Element type
= 5 2-D eight node parabolic quadri-
 lateral element
 7---6---5
 ! !
 8
 !
 !
 1---2---3
 =7 3-D eight node hexahedral element
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{8--------7} \\
\hline & \\
\hline 1 & / ! \\
\hline 1 & 1 \\
\hline 1 & 1 \\
\hline 1 & 1 ! \\
\hline \multicolumn{2}{|l|}{5--------6} \\
\hline ! & \(!\) \\
\hline \(!\) & ! 3 \\
\hline ! & / \\
\hline & \(!\) / \\
\hline & \(1 /\) \\
\hline & ! 1 \\
\hline & !/ \\
\hline \multicolumn{2}{|l|}{1---------2} \\
\hline
\end{tabular}
```



```
 previous interval specification is currently input in subroutine
 HFINPT* and transferred by the common block:
 COMMON /XZERO / XF1,XF2,YF1,YF2,ZF1,ZF2
 An alternative way of setting material no 2 is to specify the
 elements or nodes using the array LBSEEP in the common block:
 COMMON /LBSEEP/ LBSEEP(100),MXSEEP,NSEEP
******************* H F E L M 1 **************************************
Cormmand:
 HFELM1 00 00 <Optional text>
Purpose:
 Set element permeability according to values of -ielmat-
The following call is made:
 CALL HFELM1 (IELNOD, INLTYP,HCEL,IELMAT,XN,YNZN, INUNX)
 This subroutine is used to set element permeability for
 the material number specified in the following input
 READ (INUN, 810, END=) IMAT,FRPERM
 where IMAT is the material number to be set and
 gRMREF is a reference value of the permeability which
 must have been previously input in the parameter data
 input. Elements whose material numbers agree with IMAT will
 be given the element permeability as:
 HCEL (IEL, 1) = PERMV
 HCEL (IEI,2) = PERMV
 HCEL(IEL,3) = PERMV
 Each element must be designated with a material number and
 the material numbers must have been previously stored in the
 matrix IELMAT(IEL,I) where IEL is an indes to denote the
 respective element. PERMV is defined as RRMREF*FRPERM
Command:
 HEELPM
Purpose:
 Specify (unsaturated) material properties for elements or nodes
The following call is made;
 CALL HFELPM (IELNOD,IELTYP,HCEL,IELMAT,NODES,XN,YN,ZN,INUN6)
******************** H E F L P 1 *********************************
Command:
 HEFLP1 00 00 <Optional text>
Purpose:
 Set element porosity
The following call is made:
 CALL HFELP1 (IELNOD,IELTYP,HCEL,XN,YN,ZN,)
 H F E I P 1 - Subroutine to set element porosity
 Version 1, 1986-04-14
```

SUBROUTINE HFELPI(IELNOD, IELTYP, HCEL, XN, YN, ZN)
IMPLICIT REAL ( $A-H, O-Z$ )
DIMENSION IELNOD (MXNE, MX21), IELTYP (MXNE), HCEL (MXNE, 3),
$1 \quad \mathrm{XN}(\mathrm{MXNP}), Y \mathrm{M}$ (MXNP), ZN(MXNP),
$2 \quad \mathrm{XYZ}(3,21)$
COMMON/FECOM1/ MXNE,NE,MXNP,NP
COMMON/EECOM4/ NNODE, NDOE,NEK,NDIM
COMMON/FECOM6/ LNTYP $(3,12)$
COMMON/HFREFI/ PREF,TREF, HCREF, PRMREF, POREF, DNFREF, VSCREF
COMMON/IOROR / IOROR
COMMON/MXNPEL/ MX21
CHARACTER*6 POR2
LOGICAL LPORFN
DATA LPORFN /.FALSE./
GOTO 10

H FELE2 - ENTRY TO SELECTION OF POROSITY FUNCTION
ENTRY HFELP3 (POR2, FPOR2)
WRITE $(6,920) \quad$ POR2
920 FORMAT ( 6X,' HFELP3---Entry to *HFELP1* for porosity', 1 ' function: ', A6)
LPORFN $=$.TRUE.
RETURN
10 CONTINUE
IPRT=1
IF (NDIM.GT.2) THEN
WRITE $(6,930)$ NDIM
930 FORMAT (/6X,' HFELPI---Attention: NDIM=', II,' This means that'/
$6 \mathrm{X}, 9 \mathrm{X}, \mathrm{HCEL}$ must be dimensioned as HCEL (MXNE, 4) in',
2 , the main program')
ENDIF

DO 100 IEL=1,NE
LTYPE=IELTYP (IEL)
MXNDE=LNTYP ( $1, \operatorname{IELTYP}(I E L)$ )
$J=0$
---BEGIN LOOP OVER NODAL POINTS OF CURRENT ELEMENT---------------------------1
THIS LOOR IS USED TO SET POROSITY USING FUNCTION *FPOR2*
DO 40 JJ=1, MXNDE
JN=ABS (IELNOD (IEI,JU))
IF (JN.EQ.0) GOTO 40
$\mathrm{J}=\mathrm{J}+1$
$X Y Z(1, J)=X N(J N)$
$X Y Z(2, J)=Y N(J N)$
$X Y Z(3, J)=Z N(J N)$
40 CONTINUE
IF (LPORFN) THEN
HCEL (IEL,NDIM+1) = FPOR2 (IEL, XYZ, J)
ELSE
HCEL(IEL,NDIM+1) = POREF
ENDIF
100 CONTINUE

```
 WRITE (6,950) NE,POREF,LPORFN
950 FORMAT(/6X,'HFELP1---NOW set element porosity using function',
 1 ' *FPOR2*'/
 2 6X,9X,'NE=',I4,' POREF=',1P,E12.4,' LPORFN=',L2)
 IF(IPRT.GT.0) THEN
 WRITE (6,960) (IEL,HCEL(IEL,NDIM+1), IEL=1,NE)
 FORMAT(6X,5(I4,1P,E10.3)/(6X,5(I4,E10.3)))
 ENDIF
 IF(IOROR.NE.0) THEN
 WRITE (6,970) IOPOR
970 FORMAT(6X,'HFELP1---IOPOR=',I1,' was changed into zero')
 IOPOR = 0
 ENDIF
 RETURN
 END
 *********************** H F I E L N
 Command:
 HFIELN 00 00 + Optional text
 Purpose:
 To redefine the element incidences for hexahedral 8-21 nodes
 elements
 The following call is made:
 CALL HFIELN (IELNOD,IELTYP)
******************** H F IN F R ***********************************
```

Command:   HFINP3 IU JU Optional text			
Purpose:   To input characteristic curves for capillary pressure and and saturation, relative permeability versus saturation and to compute curves for the derivative of saturation versus capillary pressure for respective material.			
The following call is made: CALL HFINP3(INUN6, 0)			
```New record--------------Input of material properties for unsatura- ted conditions (subr. *HFINP3*) Currently max. 3 different materials can be input and the maximum permitted number of data points for each material is set to 41. (Format (3I5,I2,3I1,15A4))```			
Cols Format Identifier Description			
1-5	I5	LMAT	Material number (1,2 or 3)
6-10	I5	NTHX1	Number of data points to be input for the relationship between saturation (or moisture content) and the capillary pressure.
11-15	I5	NTHX2	Number of data points to be input for the relationship between the saturation (or moisture content) and the relative permeability.
16-17	I2	IUTRF	Control parameter to indicate if the input data are to be transformed. $=-1$ saturation is input $=0$ moisture content is input $=1$ moisture content is input and is to be transformed
18	I1	IGAS	Indicates that gas permeability is to be input (IGAS > 0)
19	I1.	INOP	```Indicates type fo input format = 0 2F10.0 = 1 7F10.0 = 2 Free format (not used yet)```
20	I1	IRRT	```Control parameter for printout. = 0 No printout = I print all input = 2 Print all input plus the transformed data```
21-75	15A4	TEX(15) ISPRIM	Alphanumeric information to identify the input data. Parameter to control values of end points of capillary pressure derivative curves (This parameter is not yet input here but in subroutine *HFINPT*)

```
New record--------------Saturation versus capillary pressure (subr.
    HFINP3*)
Cols Format Identifier Description
Cola
1-10 F10.0 THXI(1,L) Moisture content or saturation at data
    point No l for material No L.
11-20 F10.0 PHC(1,L) Capillary pressure at data point No 1 for
    material No L.
21-30 F10.0 THX1(2,L) Moisture content or saturation at data
        point NO 2 for material No L.
31-40 F10.0 PHC(2,I) Capillary pressure at data point No 2 for
    material No L.
41-50 F10.0 THX1(3,L) Moisture content or saturation at data
    point No 3 for material No L.
51-50 F10.0 PHC(3,L) Capillary pressure at data point No 3 for
51-60 F10.0 THX1(4,L) Moisture content or saturation at data
    point No 4 for material No L.
61-70 F10.0 PHC(4,L) Capillary pressure at data point No 4 for
    material No L.
.
to be continued on as many records as necessary.
New record-------------Relative permeability versus capillary
    pressure (subr. *HFINP3*)
Cols Format Identifier Description
1-10 F10.0 THX2(1,L) Relative permeability at data point No 1
        for material No L.
11-20 F10.0 HCRX(1,L) Capillary pressure at data point No l for
        material No L.
21-30 F10.0 THX2(2,L) Relative permeability at data point No 2
        for material No L.
31-40 F10.0 HCRX(2,L) Capillary pressure at data point No 2 for
        material No L.
41-50 F10.0 THX2(3,L) Relative permeability at data point No 3
        for material No L.
51-60 F10.0 HCRX(3,L) Capillary pressure at data point No 3 for
    for material No L.
61-70 F10.0 THX2(4,L) Relative permeability at data point No 4
        for material No I.
71-80 F10.0 HCRX(4,L) Capillary pressure at data point No 4 for
    material No L.
to be continued on as many records as necessary.
------------------------------------------------------------------------------------
        HEIN P4
Command:
    HFINP4 IU 00 Optional text
Purpose:
    To specify boundary and initial conditions for unsaturated
    flow test cases.
The following call is made:
    HFINP4 (PH,LBPH,PERM,XN,YN,ZN,INUN)
        IF (IU.GT.0) THEN INUN6=IU ELSE INUN6=INUN(6) ENDIF
```

Below follows a description of the input data:
 (subr. *HFINP4*)
Cols Format Identifier Description
--80 20A4 TEX(20) Alphanumeric information.

New record--------------Control parameters (subr. *HFINP4*)
Cols Format Identifier Description

= O No action
$=1$ Hydrostatic pressure to be set for all nodes
$=2$ Vertical boundary with prescribed pressure to be set according to
$\mathrm{x}=\mathrm{x} 2$
$\mathrm{P}=(\mathrm{Z}$-WLV1) *DENF*G
$=3$ Vertical boundary with prescribed pressure to be set according to
$\mathrm{X}=\mathrm{X1}, \mathrm{Y} 1<\mathrm{Y}<\mathrm{Y} 1 \mathrm{X}$
$\mathrm{P}=\left(\mathrm{z}\right.$-WLV1) ${ }^{\text {D }} \mathrm{DENF} * G$
$=4$ Vertical boundary with prescribed pres-
sure to be set according to
$\mathrm{X} 1<\mathrm{X}<\mathrm{X} 2$
$\mathrm{Y}=\mathrm{Y} 2$
$\mathrm{P}=(\mathrm{Z}$-WTBL $) \star \mathrm{DENF}^{*} \mathrm{G}$
$=5$ Hydrostatic pressure to be set accor-
ding to
$X=X M A X, ~ Y M I N ~<Y<Y M A X$
$Y=Y M A X, X M I N<X<X M A X$
$\mathrm{P}=(\mathrm{Z}-$ WTBL $) *$ DENF $* G$

$6-10$	F10.0 TOL	
11-15 A tolerance value.		
F10.0 RWELL	Radius of well.	

The following input is Eor gas migration calculation and may be discarded.

$26-30$	55.0	$Y M N$	Y-coordinate to specify bottom of region.
$31-35$	$F 5.0$	PMN	Permeability at bottom of region.
$36-40$	$F 5.0$	YMX	Y-coordinate to specify top of region.

41-45	F5.0	pmX	Permeability at top of region.
46-50	F5.0	HG	Height of gas cushion (metres)
51-55	F5.0	HS	Depth to sea bottom (metres)
56-75	1012	IOPBC1 (10)	Array for control parameters associated with boundary and conditions for gas migration calculation (see subroutine SFRIN1 in user controlled input).
New record--------------Geometric properties of a test case for unsaturated flow a well (subr. *HFINP4*)			
Cols	Format	Identifier	Description
1-10	F10.0	WTBL	Initial elevation of the water table. (see definition sketch below)
11-20	F10.0	WLV1	Level of the water table at $X=X 1$. (see definition sketch below)
21-30	F10.0	WLV2	Level of the water tabel at $X=X M A X$. (see definition sketch below)
31-40	F10.0	X1	Currently set by the program as $\mathrm{X} 1=\mathrm{XMIN}$.
41-50	F10.0	Y1	Level of the water table in the well. (see definition sketch below)
51-60	F10.0		Level of the bottom of the casing in the well (see definition sketch below)

Definition sketch:

Note: The following record is currently not used


```
The following call is made:
    CALL HFNDIN(NODES,XN, YN, ZN, LBHH,HH, 3, INUN8)
```

Below follows a description of the input data:
(ribed values of pressure, fluid- and rock
temperature (subr. HFNDIN)
Cols Format Identifier Explanation
1-80 20A4 TEX(20) Alphanumeric information to be used for the
identification of current element mesh.
New record
1-5 I5 MXNDE Maximum number of nodes per element.
6-10 I5 NEIN Number of elements to be input.
11-15 I5 NPIN Number of nodes to be input.
16-20 I5 IEL21X Type of hexahedral element.
$=0$ To indicate that $2-D$ or standard $3-D$
hexahedral elements are to be input
$=1$ See Data set 5 : ICP1(14)
$=2 \mathrm{~m}_{-}$
21-25 I5 IMTYPE Control parameter to check if the element
being input applies to current version (No
1) of the input subroutine (*HFNDIN*).
$=0$ or 1 Version No 1
$=2$ Version No 2
26-30 I5 NDIM Number of spatial dimensions.

Note: The previous items are usually written in connection with the creation of the element mesh. The purpose of this is to facilitate the checking of the element mesh. Both the previous records may be left blank, except for the parameter NDIM, which must be specified also here.


```
Command:
    HFNFRC IU 00 <optional text>
Purpose:
    To set nodal permeability
Example of usage
    HFNFRC 05 00 Set nodal permeability for -Region A -
    X1RA X2RA Y1RA Y2RA Z1RA Z2RA FRPERM LMAT
    where the region is given by
    X1RA < X < X2RA, Y1RA < Y < Y2RA, Z1RA < Z < Z1RA
    ERPERM is a multiplication factor for current permeability value
    LMAT is the material number to be given the elements or nodes
        located within the specified region.
The following call is made:
    CAIL HFNERC (XN,YN, ZN, PERM,NODES,IU)
The following program statements are executed for this command:
    READ (INUN, 810, END=20) XF1,XF2,YF1,YF2, ZF1, ZF2,FRPERM,IMAT
810 FORMAT (7F10.0,I3)
    IF(FRPERM.EQ.O.) FRPERM=1.0
    DO 10 I=1,NP
        IF (XN (I).LT.XF1-TOL.OR. XN(I).GT.XF2+TOL) GOTO 10
        IF(YN(I).IT.YFI-TOL.OR. YN(I).GT.YF2+TOL) GOTO 10
        IF(ZN(I).IT.ZFI-TOL.OR. ZN(I).GT.ZF2+TOL) GOTO 10
        PERM(I)=PERM(I) * ERPERM
        IF(IMAT.GT.O) NODES(I) =IMAT
        NTOT=NTOT+1
        IF(IPRT.GT.0) THEN
            NC=NC+1
            JARY (NC) = I
            IF(NC.LT.10) GOTO 10
            WRITE (6,911) JARY
            FORMAT (6X,10I5)
            NC=0
        ENDIF
10 CONTINUE
    Command:
        HFPERM 00 00 <Optional text>
        Purpose:
            Set nodal permeabilities
        The following program statements are executed for this command:
        IF(NDIM.EQ.1) THEN
            DO 20 I=1,NP
                PERM(I) = PERM1 * FUNHC2(IDUM,XN(I))
2 0
            CONTINUE
        ELSE IF(NDIM.EQ.2) THEN
            DO 30 I=1,NP
                    PERM(I) = PERMI * EUNHC2(IDUMM,YN(I))
        CONTINUE
```

```
    ELSE IF(NDIM.EQ.3) THEN
    DO 40 I=1,NP
            PERM(I) = PERM1 * FUNHC2(IDUM,ZN(I))
    CONTINUE
    ENDIF
    where PERMI is a reference value of permebility see input
                for parameter data.
            PERM is the array for the nodal permeability values
            FUNHC2 is a function to relate the permeability
                dependence versus depth. The function to
                    be selected must be specified in the input
                    of the parameter data.
The following call is made:
    CALL HFPERM (XN,YN,ZN,PERM,INUN(10) )
******************* H F P R M A ************************************
Command:
    HFPRMA 00 00 + Optional text
Purpose:
    To set mid-side nodal permeability as averages of adjacent nodes
    for respective element.
The following call is made:
    CALI HFPRMA (IELNOD, PERM)
Command:
    HFSRCI IU JU Optional text
Purpose:
    To input distributed or point heat sources
    Note: INUN(2) is used as input file for these data.
The following call is made:
    CALL HFSRC1 (XN, YN, ZN, DHS, IELNOD,IELTYP, INUN (2), 0)
Description of input data:
There are three modes of input. The input mode is selected by
a control word as follows:
'HSDR' in column 1-4 on the first record indicates that the
                subsequent record contains a region specification for a
                distributed heat source
HSDR Optional text
(A4,1X, A67)
WDHS, XREP(1), XREP (2), XREP (3), XREP (4), XREP (5), XREP (6)
(7F10.0)
where WHDS is the heat emitted per unit volume and time
All nodes encounrered within the following region are
condidered: XREP(I) <= X <= XREP(2)
XREP(3) <= Y <= XREP(4)
XREP(5)<= z<= XREP(6)
```

```
    'HSCR' in column 1-4 on the first record indicates that the
    subsequent record contains a region specification
    plus a total amount of heat emitted from this region.
    the program will then find all nodes located in the
    specified region and distribute the total load uniformly
    as concentrated heat sources.
    HSCR Optional Text
    (A4,1X,A67)
WDHS, XREP (1), XREP (2), XREP (3), XREP (4), XREP (5), XREP (6)
    (7F10.0)
        where WHDS is the heat emitted per unit volume and time
        All nodes encountered within the following region are
        considered: XREP(1) <= X <= XREP (2)
        XREP(3) <= Y <= XREP(4)
        XREP(5) <= z <= XREP(6)
    'HSCN' in column 1-4 on the first record indicates that the
        subsequent record contains a list of nodes plus the
        heat source strength that should be applied to each
        of these nodes.
    HSCR Optional Text
    (A4,1X,A67)
    NS, WS, NNDS (node list)
    (I2,F8.2, 14I5/(16I5))
        where whDS is the heat emitted per unit volume and time
        at each node.
    The input is terminated by putting '-1' or 'END' in columns 1-4
----------------------------------------------------------------------------
-----------------------Input of distributed heat sources (subrou-
    tine *HFSCRX*)
Cols Format Identifier Explanation
-------------------------------------
1-2 I2 IOP Control option for heat source input
                                = O Apply distributed heat source using the
                                default coordinate specification of the
                                heat source. Currently, the following
        is default (2-D):
            -500<x<+500
            -505<y<-495
            -E20< z< +E20
        =-1 No distributed heat sources to be
        applied (The rest of the information on
        this record will be disregarded)
        = 1 Apply distributed heat source using the
        coordinate specification as follows on
        current record (see emplanation for
        XREP below)
3-10 F8.0 WDHS Heat source strength. To be specified as
        heat. flow rate, per unit area in 2-D, per
        unit volume in 3-D.
```

11-20	F10.0 XREP (1)	$X-m i n$ The location of the heat source:
21-30	E10.0 XREP (2)	$x-\max$
31-40	F10.0 XREP (3)	Y-min $\quad \mathrm{x}-\mathrm{min}<\mathrm{x}<\mathrm{x}-\mathrm{max}$
41-50	F10.0 XREP (4)	$y-m a x \quad y-m i n<y<y-m a x ~$
51-60	F10.0 XREP (5)	z-min $\quad z-\min <z<z-m a x$
61-70	F10.0 XREP (6)	z-max
Data	t 16------------	Input of concentrated heat sources (subroutine *HFSCRI*)
Cols	Format Identifier	Explanation
1-2	I2 NS	Number of heat sources to be input by current record.
3-10	F8.0 WS	Strength of the heat source(s) being input by current record.
11-15	I5 NNDS (1)	Nodal source no 1.
16-20	I5 NNDS (2)	Nodal source no 2.
-	- -	
-	- -	
-	- .	
76-80	I5 NNDS (14)	Nodal source no 14.
Note:	The last record $1-2$	of this data set must contain -1 in columns

Command:
HYDSBS IU 00 <Optional text>

```
Purpose:
    To impose a call to the general input subroutine *HYDSBS*
The following call is made:
    CALL HYDSBS(EH,LBRH,SW,
    PERM, PORSTY,VISC,DENF,NODES,
    XN,YN, ZN,IELNOD,IELTYP,HCEL, IELMAT,
    IU)
```

Command:
MVSDE1 IU 00 <Optional text>
Purpose:
Modify element mesh according to input specification
Description of parameters:
NDIM - number of spatial dimensions
IOPSCN - an integer to control the numbering
if set equal to zero then the program will
number the elements such that the band- or
front-width will be minimized
$=1 \quad Y-X-Z$
$=2 \quad X-Y-Z$
$=3 \quad Z-X-Y$
$=4 \quad Z-Y-X$
IOP - An integer to control input

```
    =0 equidistant mesh size in each direction
    =1 mesh sizes to read by the program
    =2 mesh sizes to be read by the program but
        polar coordinates are assumed
    =3 mesh points to be given in absolute
```

 coordinates (free format)
 IROT - An integer to control rotation of the generated
mesh
ISLOPE - An integer to control if slope is to be applied
$=0$ no slope to be applied
$=1$ unidirectional slope to be applied to part
of top boundary

$=2$ unidirectional slope to be applied to part
of top boundary

SLOPE - unidirectional slope to be applied to the top
boundary of the mesh
DISX - Maximum displacement in the x-direction
CRDREF - an elevation below which no nodes may be
displaced
INUN - logical unit number for output of the resulting
element mesh
NLX - an integer to set number of grid cells in the
x-direction
NLY - ditto in the Y-direction
NLZ - ditto in the z-direction
DLX - array for the sizes of the grid cells in the
x-direction
DLY - ditto in the y-direction
DIZ - ditto in the z-direction
SLOPEI......Desired slope of the inclined part of one of the
vertical boundaries
SLORE=(YMAX-YLOW)/DISX
YIOW.......Lowest permissible level at which nodal points
may be displaced

```
    DISX........Maximum displacement in the x-direction
                        computed for non-zero slope
                        DISX=(YMAX-YLOW)/SLORE
    Either of SLOPE1 or DISX must be non-zero on input. If both
variables are set non-zero then SLOPE1 will be used as input
    The following program statements is executed to the call on the
    subroutine:
    READ(IU,*,END=...) CRDREF,DISX
```

The following call is made:
CALL MVSDE1 (XN,YN,NP,SLOPE,CRDREF,DISX)
Command:
NODSL2 IU $00+$ Optional text
Purpose:
To specify regions for nodal printout
Example of usage
NODSL2 0500 Specification of regions for printot
X1R1 X2R1 Y1R1 Y2R1 Z1R1 Z2R1 0
$\begin{array}{llllll}\mathrm{X} 1 \mathrm{R} 2 & \mathrm{X} 2 \mathrm{R} 2 & Y 1 R 2 & Y 2 R 2 & \text { Z1R2 } & \text { Z2R2 } 0\end{array}$
X1R1 X2R1 Y1R1 Y2R1 21R1 Z2R1 -1
where the regions are given by
$\mathrm{X} 1 \mathrm{RI}<\mathrm{X}<\mathrm{X} 2 \mathrm{RI}, \mathrm{Y} 1 \mathrm{RI}<\mathrm{Y}<\mathrm{Y} 2 R I, \mathrm{Z1RI}<\mathrm{Z}<\mathrm{Z1RI}$
The following call is made:
CALL NODSL2 (XN, YN, 2N, NP, NDSPRT, MXNPRT,NPRT, INUN (2))
The following program statements are executed for this call:
N O D S L 2 - SUBROUTINE TO LOCATE NODES
THIS VERSION READS IN AN INTERVAL
$\mathrm{X} 1<\mathrm{X}<\mathrm{X} 2, \quad \mathrm{Y} 1<\mathrm{Y}<\mathrm{Y} 2, \quad \mathrm{Z} 1<\mathrm{Z}<\mathrm{Z} 2$
AND FINDS ALL NODES LOCATED WITHIN THIS
INTERVAL

SUBROUTINE NODSL2 (XN, YN, $2 N, N P, ~ N D S P R T, M X N P R T, N P R T, ~ I N U N)$
IMPLICIT REAL (A-H,O-Z)
DIMENSION XN(NP), YN(NP), $2 N(N P)$
DIMENSION NDSPRT (MXNPRT)
COMMON/FECOMI/ MXNE,NE,MXNP,NP
COMMON/EECOM4/ NNODE,NDOE,NEK,NDIM
$\mathrm{TOL}=0.001$
WRITE (6,905) NP, INUN, MXNPRT,NPRT, TOL
905 EORMAT (/6X,'NODSL2---NP=',I4,' INUN=',I2,' MXNPRT=',I3,
1 , NPRT=',I3,' tolerance (TOL) $=^{\prime}, 1$ 1PE10.3)
5 READ (INUN, 810, END=50) X1,X2,Y1,Y2, 21,22, IMAT
810 FORMAT (6F10.0, I5)
NPRT1=NPRT

```
    XMN=X1-TOL
    XMX =X2+TOL
    YMN=Y1-TOL
    YMX=Y2+TOI
    ZMN=ZI-TOI
    ZMX=Z2+TOL
    WRITE (6,910) X1,X2,Y1,Y2,Z1, Z2,IMAT,NRRT,MXNPRT
910 FORMAT (/6X,'NODSL2---X1=',F8.2,'< X < X2=',F8.2/
    > 6X,9X,'Y1=',F8.2,' < Y < Y2=',F8.2/
    1 6X,9X,'Z1=',F8.2,'< Z< Z2=',F8.2/
    2
    6X,9X,'IMAT=',I3,' NPRT=',I3,' MXNPRT=',I3)
        DO 20 I=1,NP
        IF (XN (I).IT.XMN .OR. XN(I).GT.XMX .OR.
        1 YN(I).IT.YMN .OR. YN(I).GT.YMX) GOTO 20
    IF(NDIM.LT.3) GOTO 10
    IF(ZN(I).LT.ZMN .OR. ZN(I).GT.ZMX) GOTO 20
    10 NPRT=NPRT+1
    IF (NPRT.GT.MXNPRT) GOTO 20
    NDSPRT (NPRT) =I
20 CONTINUE
    IF(NPRT.EQ.NPRT1) GOTO 40
    NPRTI=NPRTI+1
    IF (NPRT.GT.MXNPRT) THEN
        WRITE (6,920) NPRT,MXNPRT
        FORMAT(/6X,'NODSL2---NRRT=',I3,' > MXNPRT=',I3)
        NPRT=MXNPRT
    ENDIF
    NPRTX=NRRT-NPRT1+1
    WRITE (6,930) NPRTX
930 FORMAT (/6X,' NODSL2---NPRTX=',I3,' nodes selected by ',
    1 'current specification:')
    IF (NPRT1.LE.MXNRRT) WRITE (6,931) (NDSPRT(I), I=NPRT1,NPRT)
931 FORMAT (6X,10I5)
    IF(IMAT.LT.0) GOTO 60
    GOTO 5
    40 WRITE (6,940)
940 FORMAT(/6X,'NODSL2---No nodes selected by current region',
    1 ' specification')
    IF(IMAT.LT.O) THEN
        GOTO 60
    ELSE
        GOTO 5
    ENDIF
    50 WRITE (6,945) INUN
945 EORMAT (6X,'NODSL2---NOW read to End of File - INUN=', I5)
    60 WRITE (6,950)
950 FORMAT (6X,'NODSL2',66('-'))
```

```
        RETURN
        END
    ****************** N O D S L 4
Command:
    NODSL4 IU 00 <Optional text>
Purpose:
    Specify and set zones of specific material properties.
The following call is made:
    CALL NODSL4 (IELNOD,IELTYP,IELMAT,NODES,XN,YN,ZN, INUN8)
The following program statements are executed for this call:
    N O D S L 4 - Subroutine to indentfy elements and their related *
                                    nodes for given specifications
                                    this version is used to assign material
                                    properties to elements and nodes
SUBROUTINE NODSL4(IELNOD, IELTYP,IELMAT,NODES,XN,YN,ZN, INUN)
IMPLICIT REAL (A-H,O-Z)
DIMENSION IELNOD (MXNE,MX21),IELTYP (MXNE),
                                    IEIMAT (MXNE,2),
    1 NODES (MXNP), XN (MXNE),YN (MXNP),ZN (MXNP)
DIMENSION JNSKIP(125)
COMMON/EECOM1/ MXNE,NE,MXNP,NE
COMMON/FECOM6/ LNTYP(3,12)
COMMON/MXNPEL/ MX21
MXSKIP=125
NSKIP=0
READ (INUN, 810, END=15) XX1,XX2,YY1,YY2, ZZ1, ZZ2,IMAT
810 FORMAT (6F10.0,I5)
WRITE(6,910) XX1,XX2,YY1,YY2, Z21, ZZ2,IMAT
910 FORMAT(/6X,'NODSL4---XXI=',F8.2,' XX2=',F8.2/6X,9X,'YY1=',F8.2,
    1 'YY2=',F8.2/6X,9X,'ZZ1=',E8.2,' ZZ2=',E8.2/
    2 6X,9X,'material number:',I3)
    CALI NODSLC(XN,YN,ZN,NP,XX1,XX2,YY1,YY2,Z21,ZZ2,
    1
                                    JNSKIP,NXSKIP,NSKIP)
IF(IMAT.GT.O) GOTO 10
GOTO 16
15 WRITE (6,935) INUN
935 EORMAT(6X,'NODSL4---NOW read to End of File - INUN=', I5)
16 CONTINUE
NEX=0
DO }50\mathrm{ IEL=1,NE
NNODE=LNTYP(1,IEITYP(IEL))
NCHK=0
DO 30 J=1,NNODE
DO 20 K=1,NSKIP
IE(IEINOD (IEI,J).NE.JNSKIP(K)) GOTO 20
NCHK=NCHK+1
20 CONTINUE
30 CONTINUE
```

```
    IF(NCHK.EQ.NNODE) THEN
        NEX=NEX+1
        IEIMAT (IEL, 1) =ABS (IMAT)
    ENDIF
5 0 ~ C O N T I N U E ~
    NPX=0
    DO 80 I=1,NP
    DO 60 J=1,NSKIP
    IF(JNSKIP(J).EQ.I) GOTO }7
6 0 ~ C O N T I N U E ~
    GOTO }8
70 NPX=NPX+1
    NODES(I)=ABS (IMAT)
8 0 ~ C O N T I N U E ~
    WRITE (6,940) NP,NPX, (J,JNSKIP (J), J=1,NPX)
940 EORMAT (/6X,'NODSL4---Total number of nodes (NP) =', I4/
    1 6X,9X, 'Number of nodes selected =', I4/
    2 6x,9x, 'The following nodes were selected :'/
    3(6X,5(I5,I5,4X)))
    WRITE (6,950) NE,NEX
950 FORMAT (/6X,'NODSL4---Total number of elements (NE) =', I4/
    1 6X,9X, 'number of elements selected =', I4)
    RETURN
    END
    ----------------------------------------------------------------------------------------
    ******************** P H X M A X *************************************
    Command:
    PHXMAX
    Purpose:
    Set prescribed pressure on right boundary.
    The following call is made:
            CALI PHXMAX (PH, LBPH,XN,YN,'QH')
    ******************* P H X M I N *************************************
    Command:
    PHXMIN
    Purpose:
    Set prescribed pressure on left hand boundary.
The following call is made:
    CALL PHXMIN (PH,LBPH,XN,YN,'PH')
********************* P H Y D R O t***********************************
Command:
    PHYDRO IU JU Optional text
Purpose:
    To select node numbers for printout
    etc.
```

```
The following call is made:
    CALL PHYDRO(XN,YN, ZN, PH,LBPH,TE,LBTF,TR,LBTR,INUNX)
    *********************************************************************
Data set --------------Input node numbers subject to hydrostatic
    conditions (subroutine *PHYDRO*)
Cols Format Identifier Explanation
1-5 I5 NI Number of nodes to be specified on the
    ensuing record
    Node at which the groundwater table is
    situated
    Printout control parameter (=0 if no
    printout is desired, =1 if printout is
    desired)
New record-------------------------------------------------------------------------
Cols Format Identifier Description
1-5 I5 NODES(1) 1:st node in the vertical line of nodes
    ordered from the top to the bottom of the
    flow domain.
6-10 I5 NODES(2) 2:nd node.
. . .
76-80 I5 NODES(16) 16:th node.
Note: If no data are to be input to this data set insert a record
    containing -1 in columns 1-2.
******************** P H Y M A X *************************************
Command:
    PHYMAX
Purpose:
    Set prescribed pressure on top boundary
The following call is made:
        CALL EHYMAX (PH, LBPH,XN,YN,'PH')
******************* P H Y M I N *************************************
Command:
    PHYMIN
Purpose:
    Set prescribed pressure on bottom boundary
The following call is made:
    CALL PHYMIN (PH,LBPH,XN,YN,'PH')
******************* T E X M A X **************************************
Command:
    TFXMAX
Purpose:
    Set prescribed temparature on right hand boundary
The following call is made:
        CALL PHXMAX (TF,LBFT,XN,YN,'TE')
```

The following subroutine is used to execute the call

```
**************************************************************************
    P H X M A X - Subroutine to set prescribed pressure at the
                                    the vertical boundary x=XMAX, YMIN<= y <= YMAX *
```

C
SUBROUTINE PHXMAX (PH,LBPH,XN,YN,T2)
C
IMPLICIT REAL (A-H,O-Z
DIMENSION PH (MXNP), LBRH (MXNP), XN (MXNP), YN (MXNP)
COMMON/FECOM1/ MXNE,NE,MXNP,NP
COMMON/PBOUND/ PHBC (6), LBPHBC (6)
COMMON/PLOTXY/ XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
REAL XMIN, XMAX,YMIN, YMAX,SX,SY, XORG, YORG,DX,DY
CHARACTER*2 T2
C
IPRT=1
C
$\operatorname{IF}(I P R T . G T .1) \quad \operatorname{WRITE}(6,903) \quad(X N(I), I=1, N P)$
903 FORMAT (/6X,'PHXMAX---XN:'/(6X,8F8.1))
C
904 FORMAT(/6X,9X,9X, 'YN:'/(6X,8F8.1))
c
$\operatorname{IF}(\operatorname{IPRT} . G T .0) \quad \operatorname{WRITE}(6,915)$
915 FORMAT (/6X,'PHXMAX---Right vertical boundary')
C
TOL $=1 . \mathrm{E}-5$
$\mathrm{XMX}=\mathrm{XMAX}-\mathrm{TOL}$
NPMAX $=0$
C
DO $20 \mathrm{I}=1$, NE
IF (XN (I). LT.XMX) GOTO 20
$\mathrm{CC} \lll \ll \mathrm{PH}(\mathrm{I})=\mathrm{PHBC}(2)$
$\mathrm{CC} \lll \lll L B P H(I)=\operatorname{LBPHBC}(2)$
C-----
$\operatorname{LBPH}(I)=1$
C-----
NPMAX $=$ NPMAX +1
IF (IPRT.GT.0) $\operatorname{WRITE}(6,920)$ NPMAX,I, XN(I), T2,I,PH(I), T2,I,LBPH(I)
920
FORMAT ($6 \mathrm{X},{ }^{\prime}$ PHXMAX---NPMAX=',I3,' XN(',I4,')=', E7.2,
1 ' ', A2,' (',I4,') =', 1P,E10.3,' LB', A2,' (',I4,') =' I I)
20 CONTINUE
C
WRITE $(6,930)$ XMAX, $\operatorname{PHBC}(2), \operatorname{NPMAX}$
930 FORMAT (/6X,'PHXMAX---XMAX=',F7.2,' $\mathrm{PHBC}(2)={ }^{\prime}, \mathrm{F} 7.2, \prime$ NPMAX=', I4)
C
RETURN
END

Command:
TFXMIN
Purpose:
Set prescribed temperature on left hand boundary

```
    The following call is made:
            CALL PHXMIN (TF,LBFT,XN,YN,'TE')
    The following subroutine is used to execute the call:
    *******************************************************************
    F H X M I N - Subroutine to set prescribed pressure at the *
                                    the vertical boundary x=XMIN, YMIN<= Y <= YMAX *
C
    SUBROUTINE RHXMIN(PH,LBRH,XN,YN,T2)
C
    IMPLICIT REAL (A-H,O-Z)
    DIMENSION PH(MXNP),LBPH(MXNP),XN (MXNP),YN (MXNP)
    COMMON/FECOM1/ MXNE,NE,MXNP,NP
    COMMON/PBOUND/ PHBC (6), LBPHBC (6)
    COMMON/PLOTXY/ XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
    REAL XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
    CHARACTER*2 T2
C
C
        IF(IPRT.GT.1) WRITE (6,903) (XN(I),I=1,NP)
    903 EORMAT (/6X,' PHXMIN---XN:'/(6X,8F8.1))
C
    904 FORMAT (/6X,9X,9X, 'YN:'/(6X,8F8.1))
C
    IF(IPRT.GT.0) WRITE(6,905)
    905 FORMAT(/6X,' PHXMIN---Ieft vertical boundary')
C
    TOL = 1.E-5
    XMN = XMIN+TOI
    NPMIN = 0
C
    DO 20 I=1,NP
        IF(XN(I).GT.XMN) GOTO 20
CC}<<<<<< PH(I) = PHBC(1
CC<<<< LBPH(I) = LBPHBC(1)
C-----
        LBPH(I) = 1
C-----
        NPMIN = NPMIN+1
        IF(IPRT.GT.0) WRITE (6,910) NPMIN,I,XN(I),T2,I,PH(I),T2,I,IBPH(I)
    910 FORMAT( 6X,'PHXMIN---NPMIN=',I3,' XN(',I4,'')=',F7.2,
        I ' ',A2,'(',I4,')=',1P,E10.3,' IB',A2,'(',I4,')=',II)
        20 CONTINUE
C
        WRITE(6,930) XMIN,PHBC(1),NEMIN
    930 FORMAT (/6X,'PHXMIN---KMIN=', E7.2,' PHEC(1)=r, E7.2,' NPMIN=',I4)
C
    RETURN
    END
Command:
    TFYMAX
```

Purpose:
Set prescribed tempareture on top hand boundary
The following call is made:
CALL PHYMAX (TF, LBFT, XN, YN, 'TF')

P H Y M A X - Subroutine to set prescribed pressure at then * horizontal boundary XMIN<= $x<=X M A X, Y=Y M A X ~ * ~$

C
SUBROUTINE PHYMAX (PH,LBPH,XN,YN,T2)
C
IMPLICIT REAI ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION PH (MXNP), LBPH (MXNP), XN (MXNP), YN (MXNP)
COMMON/FECOM1/ MXNE,NE, MXNP,NP
COMMON/PBOUND/ PHBC (6), LBPHBC (6)
COMMON/PLOTXY/ XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
REAL XMIN, XMAX, YMIN, YMAX, SX,SY, XORG,YORG,DX, DY
CHARACTER*2 T2

IPRT=1
$\operatorname{IF}(\operatorname{IPRT} . \operatorname{GT} .1) \quad \operatorname{WRITE}(6,903) \quad(\mathrm{XN}(I), I=1, \mathrm{NP})$
$903 \operatorname{FORMAT}\left(/ 6 \mathrm{X},{ }^{\prime} \mathrm{EHYMAX}---\mathrm{XN}: / /(6 \mathrm{X}, 8 \mathrm{~F} 8.1)\right)$
C
$904 \operatorname{FORMAT}(/ 6 \mathrm{X}, 9 \mathrm{X}, 9 \mathrm{X}, \quad$ YN:'/(6X,8E8.1))
C
IF (IPRT.GT.0) WRITE $(6,915)$
915 FORMAT (/6X,'PHYMAX---Upper horizontal boundary')
C
TOI $=1 . E-5$
$Y M X=Y M A X-T O L$
NPMAX $=0$
C
DO $20 I=1$, NP
IF (YN (I).LT.YMX) GOTO 20
$\mathrm{CC} \lll \ll \mathrm{PH}(\mathrm{I})=\mathrm{PHBC}(4)$
$\mathrm{CC} \lll<\mathrm{LBPH}(I)=\mathrm{LBPHBC}(4)$
C-----
LBPH (I) $=1$
C-----
NPMAX $=$ NPMAX +1
IF (IPRT.GT.0) WRITE (6, 920) NPMAX, I, YN(I), T2, I, PH (I), T2, I, IBPH (I)
920
FORMAT ($6 \mathrm{X},{ }^{\prime} \mathrm{PHYMAX}--\mathrm{NAPMAX}^{\prime}, I 3,^{\prime} \quad \mathrm{YN}\left({ }^{\prime}, I 4,{ }^{\prime}\right)={ }^{\prime}, \mathrm{F} 7.2$,

20 CONTINUE
C
WRITE (6,930) YMAX, PHBC (4), NPMAX

C
RETURN
END

Command:

TFYMIN

```
        Purpose:
            Set prescribed temperature on bottom boundary
        The following call is made:
            CALL PHYMIN (TF,LBET,XN,YN,'TF')
        P H Y M I N - Subroutine to set prescribed pressure at the *
                        horizontal boundary XMIN<= x <= XMAX, y=YMIN *
C
    SUBROUTINE RHYMIN(PH,LBRH,XN,YN,T2)
C
    IMPLICIT REAL (A-H,O-Z)
    DIMENSION PH(MXNP),LBPH (MXNP),XN (MXNP),YN (MXNP)
    COMMON/FECOM1/ MXNE,NE,MXNP,NP
    COMMON/PBOUND/ PHBC(6),LBPHBC(6)
    COMMON/PLOTXY/ XMIN,XMAX,YMIN,YMAX,SX,SY,XORG,YORG,DX,DY
    REAL XMIN,XMAX,YMIN, YMAX,SX,SY,XORG,YORG,DX,DY
    CHARACTER*2 T2
C
    IPRT=1
c
            IF(IPRT.GT.1) WRITE (6,903) (XN(I),I=1,NP)
    903 FORMAT(/6X,'PHYMIN---XN:'/(6X,8F8.1))
C
        IF(IPRT.GT.1) WRITE (6,904) (YN(I),I=1,NP)
    904 EORMAT(/6X,9X,9X, 'YN:'/(6X,8F8.1))
C
        IF(IPRT.GT.0) WRITE (6,905)
    905 FORMAT(/6X,'PHYMIN---Lower horizontal boundary')
C
    TOL = 1.E-5
    YMN = YMIN+TOL
    NPMIN = 0
C
    DO 20 I=1,NP
        IF(YN(I).GT.YMN) GOTO 20
CC<<<< PH(I) = PHBC(3)
CC<<<< LBPH(I) = LBPHBC(3)
c-----
    LBPH(I) = I
C-----
        NPMIN = NPMIN+1
        IF(IPRT.GT.0) WRITE (6,910) NPMIN,I,YN(I),T2,I,PH(I),T2,I,LBPH(I)
    910 FORMAT( 5X,'PHYMIN---NPMIN=',I3,' YN(',I4,')=',F7.2,
        1 ' ',A2,'(r,I4,')=',1P,E10.3,' LB',A2,'(',I4,')='r,I1)
        20 CONTINUE
C
        NRITE (6,930) YMIN,PHBC(3),NPMIN
    930 FORMAT(/6X,'PHYMIN---YMIN=',F7.2,' PHBC(3)=',E7.2,' NPMIN=',I4)
C
        RETURN
            END

\section*{Command:}
```

SELNDS IU JU Optional text

```
```

Furpose:
To select node numbers for printout
etc.
The following call is made:
CALL SELNDS(INUN(2))
Data set 18--
including pressure, fluid velocities,
temperature and the strength of a distri-
buted heat source (subroutine *SELNDS*)
Cols Format Identifier Explanation

6-10 I5 IN16(2) Node number
. . . .
.
76-80 I5 IN16(16) Node number
Note: The last record in this data set must contain -1 in columns
1 to 2.

```
```

******************** S F R I N 1

```
******************** S F R I N 1
Command:
    SFRINI IU 00 <Optional text>
Purpose:
    Set boundary and initial conditions for 1-D gas flow test
The following call is made:
    CALI SFRIN1 (NODES,PH,LBPH,TR,LBTR,XN,YN,ZN, INUN6,0)
-------------------------------------------------------------------------------
********************* S H T T I N ***************************************
Command:
    SHWTIN
Purpose:
    Input the time dependent energy output for hydrocoin LEVEL2,CASE1
The following call is made:
    CALL SHWTIN (INUNX)
    This subroutine reads:
    I. Optional text card
    II. Number of heat source time break points to be read in
        by the program.
III. The time (days) and the energy output (kW) for
        each time break point. The data values are stored
        in the following common block:
        where TPOWER(150) is the array for the time
                break points and
                QPOWER(150) is the energy output to be applied
                at the corresponding time break point.
                NTPOW is the number of data pairs to be
                read in.
```

```
Note: The heat source values being input will only
    be applied to the heat flow equation is
    function DECAY3 is specified in the input
    for function selection.
```

```
3.3 DESCRIPTION OF AUXILIARY EILES
Specification of disc storage used for the element matrices
The computer model presented has been developed on an AMDAHL 470/7A
computer being compatible with IBM computers. This means that the
job control language (JCL) referred to in the sequel is not
generally applicable. In fact it may not have to considered at all
when running the model program on other computers such as Prime,
Cray, etc. since these computers have more tractable methods for
handling permanent as well as temporary datasets. Thus in addition
to the Amdahl computer as mentioned above the model program has
been run on a Prime }9950\mathrm{ computer and a Cray1 computer.
The datasets that have to be specified in one way or the other are
    Input:
        INUN(1) for parameter data
        INUN(3) if a previous solution is to be restarted and
                                    continued
        INUN(8) for input of the element grid (coordinates of nodal
                            points and element incidences)
    Output:
        INUN(4) Echo file for input of parameter data and element
                grid data
        INUN(5) Output file For solution values
        These output files are only needed for post-processing.
    Temporary datasets:
        INUN(8) to hold the frontal equations
        This is in most cases the only temporary dataset that the user
        may have to consider is INUN(8) which is used to hold the
        frontal equations for problems that are too large to allow for
        incore solution of the matrix problem.
```

Notation used for dataset definitions

NE - Number of elements
NP - Number of nodal points
NEK - Number of variables in each element
IDB - Control parameter $(=1$ for single precision,
$=2$ double precision)
NW - Number of words per record
NRBL - Number of records per block
NRED - Number of physical records for each logical record
3.3.1 Description of Input/Output data sets
Variable Default Description
INUN(1)

INUN (2)	5	Input file. Heat sources, concentrated or distributed (subr. *HFSRCI*), boundary and initial conditions (subr. *HFBCX1*), and nodes selected for printout (subr. *SELNDS*)
INUM (3)	20	Input file. Solution values from the preceding execution to restart the previous job. This data file is usually created by the use of subroutine *HFSAVD*. The input data are read into the model by subroutine *HFNDUV*.
INUN (4)	21	Output data set used for storage of the parameter values, nodal data and element incidences. The parameter data are read by subroutine *HFINPT*, the nodal data by *HFNDIN* and the element incidences by subroutine *HFELIN*. Alternative entries to the latter two subroutines, i.e. *HFNDUT* and *HFELUT*, are used to output the nodal data and the element incidences. $\begin{array}{ll} \text { RECFM } & =F B \\ \text { LRECL } & =80 \\ \text { BLKSIZE } & =\text { LRECL*NRBL } \\ \text { SPACE } & =(\text { BLKSIZE, }((N P+N E+25) / \text { NRBL, } 5)) \end{array}$
INUN (5)	22	Output data set for the storage of the solution values. The solution values are written to the present data set using subroutine *hFSAVD*. This data file may the be used for various postprocessing or to restart the model execution. $\begin{array}{ll} \text { RECFM } & =V S B \\ \text { LRECL } & =N P \star 4 * I D B / N R E D+4 \\ \text { BLKSIZE } & =\operatorname{LRECL}+4 \\ \text { SPACE } & =(B L K S I Z E,(3 * N R E D, 1)) \end{array}$
INUN (6)	55	```Input data set used for unsaturated data. RECFM = FB LRECL = 80 BLKSIZE = LRECL*NRBL SPACE = (BLKSIZE,((NP+NE+25)/NRBL,5))```
INUN (7)	56	```Input data set used for stress data. RECFM = FB LRECL = 80 BLKSIZE = LRECL*NRBL SPACE = (BLKSIZE,((NP+NE+25)/NRBL,5))```
INUN (8)	5	```Input data set used for element mesh data. RECFM = FB LRECL = 80 BLKSIZE = LRECL*NRBL SPACE = (BLKSIZE,((NP+NE+25)/NRBL,5))```
3.3.2 Description of intermediate data sets		
The logical unit numbers for the temporary datasets are stored in the following common block: COMMON/UNITS / IUNIT(10)		
Variable	Defau	Description
IUNIT(1)	11	```Element matrices for the pressure equation RECFM = VSB LRECL = 4+4 + NEK*NEK*IDB +4 BLKSIZE = LRECL*NRBL + 4```

-184-		
		SPACE $=(\mathrm{BLKSIZE},(\mathrm{NE} / \mathrm{NRBL}, 5)$)
IUNIT (2)	12	Right hand sides to the element matrices for the pressure equation RECFM = VSB LRECL = NEK*4*IDB + 4 BLKSIZE $=$ LRECL*NRBL +4 SPACE $=(B L K S I Z E,(N E / N R B L, 2))$
IUNIT (3)	13	```Element matrices for the temperature equations RECFM = VSB LRECL = 4+4 + NEK*NEK*IDB +4 BLKSIZE = LRECL*NRBL + 4 SPACE = (BLKSIZE,(NE/NRBL,5))```
IUNIT (4)	14	```Right hand sides to the element matrices for the temperature equations RECFM = VSB LRECL = NEK*4*IDB + 4 BLKSIZE = LRECL*NRBL + 4 SPACE = (BLKSIZE,(NE/NRBL,2))```
Variable	Default	Description
IUNIT (5)	15	$\begin{aligned} & \text { Basic integration matrices } \\ & \text { RECFM }=\text { VSB } \\ & \text { LRECL }=4+4+N E K * N E K * I D B+4 \\ & \text { BLKSIZE }=\text { LRECL*NRBL }+4 \\ & \text { SPACE }=(B L K S I Z E,(N E / N R B L, 5)) \end{aligned}$
IUNIT (6)	16	```Basic element matrices RECFM = VSB LRECL = (4+4 + NEK*NEK*IDB +4 BLKSIZE = LRECL*NRBL + 4 SPACE = (BLKSIZE,(NE/NRBL,5))```
IUNIT (8)	03	```Frontal equations RECFM = VSB LRECL = MXFRON*4*IDB + 4*IDB + 4+4+4 BLKSIZE = LRECL*NRBL + 4 SPACE = (BLKSIZE,(NP/NRBL,5))```
IUNIT (9)	04	$\begin{aligned} & \text { Right hand sides to frontal equations } \\ & \text { RECFM }=\text { VSB } \\ & \text { LRECL }=4 * I D B+4 \\ & \text { BLKSIZE }=\text { LRECL*NRBL }+4 \\ & \text { SPACE }=(B L K S I Z E,(N P / N R B L, 5)) \end{aligned}$
The above given default values of the logical unit numbers of the previous datasets are currently set in a BLOCK DATA attached to the MAIN program in the program listings.		
3.3.3 Specification of data sets used by the frontal solvers		
The logical unit numbers of the datasets connected with the frontal solvers are stored in the following common block: COMMON/IUERON/ IU1,IU2,IU3,IU4		
Variable	Default	Description
IU1	01	Data set containing the element matrices
IU2	02	Data set for the right hand side vectors to the element matrices
IU3	03	Data set for intermediate storage of the fron-

```
tal equations
IU4 O4
hand sides of the frontal equations
The above given default values of the logical unit numbers of the datasets are currently set in a BLOCK DATA attached to subroutine * HFRON2 * in the program listings.
Note: If the logical unit numbers in the common block/UNITS/ differ from the ones in the common block/IUFRON/ the former ones will override the latter ones.
```


3.3.4 Examples of DCB specification

Example of $D C B$ specification for temporary data sets

NE $=592$, NP $=2901, \mathrm{NEK}=20, \mathrm{MXFRON}$			
11	```DCB=(RECFM=VSB,LRECL=3212,BLKSIZE=9640, SPACE=(9640, (198,5))```	NRBL	
12	```DCB=(RECFM=VSB,LRECL=164,BLKSIZE=4104, SPACE=(4104,(24,2))```	NBRL	$=25$
03	$\begin{aligned} & \mathrm{DCB}=(\mathrm{RECFM}=\mathrm{VSB}, \mathrm{LRECL}, 1828, \mathrm{BLKSIZE}=9144, \\ & \mathrm{SPACE}=(9144,(581,2)) \end{aligned}$	NRBL	
04	CFM $=$ VSB, LRECL=12, BLKSIZE=2404,	NRBL	$=200$

Example of DCB for the output data sets

```
    NP = 2901
21 DCB=(RECFM=FB, LRECL=80,BLKSIZE=2000, NRBL = 25
    SPACE=(2000,(141,5))
22 DCB=(RECFM=VSB, LRECL=7740,BLKSIZE=7740, NRED = 3
    SPACE={7740,(9,1))
3.3.5 Block data and common
Block data attached to MAIN
-----------------------------
    COMMON/IUNITS/ IUNIT(10)
    COMMON/HFWIUN/ IUNIT1,IUNIT2
    DATA IUNIT/11,12,13,14,15,16, 4*0/
    DATA IUNIT1,IUNIT2/31,32/
Block data attached to subroutines *PHSLVF* and *TMSLVE*
    COMMON/IUNITS/ IUNIT(10)
    COMMON/IUFRON/ IU1,IU2,IU3,IU4
    DATA IU1,IU2,IU3,IU4/01,02,03,04/
    IU1 = IUNIT(1)
    IU2 = IUNIT(2)
In subroutine *HFELFX*
    COMMON/IUNITS/ IUNIT(10)
    IUN1 = IUNIT(1)
    IUN2 = IUNIT(2)
```

In subroutine *hFELTI*

```
    COMMON/IUNITS/ IUNIT(10)
    IUN3 = IUNIT(3)
    IUN4 = IUNIT(4)
    IUN5 = IUNIT(5)
    IUN6 = IUNIT(6)
```

Examples of JCL and input data setups

In the following examples the model has been run in batch mode in three steps: compile, link and go. Below follows a typical JCL setup, in which part of the model program is input and compiled as a source module and part of the model program is invoked from a disc library, of course implying that these subroutines have been compiled and stored on this disc library prior to the execution.

3.3.6 Restart

A previous solution is continued by specifying the number of the data file where the solution velues have been stored. The program reads this data file until the end and uses the data from the last time step as initial values for the continued solution. (see 3.2 Input data preperation) It is also possible to perform the restart at another time step than the final one by specifying a restart time step (NREADT)

Input of solution values from a previous execution (subr. *HFNDUV*). These data are unformatted.

NSTEP	Time step number.
TIME	Time.
DT	Time increment.
$\operatorname{ICPSLV}(10)$	Control parameters to indicate the kind of data that have been stored on the file and that may be input.
	```ICRSLV(1)=1 : pressure values to be input ICPSLV(2)=1 : fluid temperature values to be input```
	$\operatorname{ICPSLV}(3)=1$ : rock temperature values to be input
	$\operatorname{ICPSLV}(4)=1:$ rock displacemnts to be input
IOR HCX	Control parameter to indicate if nodal permeabilities have been stored.
NPX	Number of nodal values.
NDIMX	Number of spatial dimensions.

H F N D U $V$ - SUBROUTINE FOR UNFORMATTED INPUT OF NODAL VAIUES THIS SUBROUTINE READS DATA UNITL THE END OF THE INPUT FILE IS REACHED

NREADT

- An integer to indicate how many time steps that should be read by this subroutine. If a value of zero is set for this parameter the file will be read until the end

SUBROUTINE HFNDUV(PH,TF,TR,DU,PERM,NSTER,TIME,DT,IUN)
IMPLICIT REAL ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
DIMENSION PH(MXNP),TF (MXNP),TR(MXNP),DU(MXNP, 3), PERM (MXNP)
COMMON/EQSOLV/ ICPSLV(10)
COMMON/FECOMI/ MXNE,NE,MXNP,NP
COMMON/IORHC / IOPHC
COMMON/MATMD1/ IMATM,IPORF,IPERF
COMMON/NREADT/ NREADT
IF (IUN.LT.1) THEN
$\operatorname{WRITE}(6,960)$ IUN
960 FORMAT (/6X,'HFNDUV---NO input data read by this subroutine',
$1 \quad,---I U N=\prime$, I3)
WRITE $(6,999)$ NSTEP,TIME,DT
999 FORMAT (/6X,'HENDUV---NSTEP=', I3,
1 , TIME=',1P,E15.7,' DI=',E15.7)
RETURN
ENDIF
REWIND IUN
IEND $=0$
20 CALI HFNDUX (PH,TF,TR,DU, PERM, NSTER,TIME,DT,IUN,IEND,*40)
CC $\lll<$ WRITE $(6,920)$ NSTEP, TIME, DT, ICPSLV, IOPHC, NP, NDIM
920 FORMAT ( 6 X, 'HFNDUV---NSTEP=', I3,' TIME=', 1P,E10.3, 1 ' DT=',1P,E10.3/
$26 \mathrm{X}, 9 \mathrm{X},^{\prime}$ ICPSLV : ',10I2,' IORHC=', I2/
$36 \mathrm{X}, 9 \mathrm{X},{ }^{\prime} \mathrm{NP}={ }^{\prime}, I 4,^{\prime} \quad$ NDIM $={ }^{\prime}$, II)
C---CHECK IF THE READING HAS COME TO THE LAST TIME STEP (NREADT)
IF (NSTEP.EQ.NREADT .AND. NREADT.GT.0) GOTO 60
IF (IEND.EQ.0) GOTO 20
$40 \operatorname{WRITE}(6,940)$ IUN
940 FORMAT (/6X,'HFNDUV---Now read nodal values from unit:', I3) RETURN
$60 \operatorname{WRITE}(6,970)$ NREADT,IUN
970 FORMAT (/6X,'HFNDUV---Now read', I3,' (NREADT) time steps',
1 ' on file $I U N=$ ', I3)
NP1 = 000
$\mathrm{NP} 2=000$
$\operatorname{WRITE}(6,980) \quad(I, P H(I), I=N P 1, N P 2)$
980 FORMAT (/6X,'HFNDUV---RH:'/(2X,1P,5(I5, E10.3)))
RETURN
END

```
 H F N D U X - SUBROUTINE FOR UNFORMATTED INPUT OF NODAL VALUES
 THIS SUBROUTINE READS DATA FOR ONE TIME STEP
 AT EACH CALL UPON THE SUBROUTINE
 IEND - An integer which on output is set equal to one
 if the input file is read to end of file
 SUBROUTINE HFNDUX(PH,TE,TR,DU, PERM,NSTEP,TIME,DT,IUN,IEND,*)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION FH(MXNP),TF (MXNP),TR(MXNP),DU (MXNP, 3), PERM(MXNP)
 COMMON/EQSOLV/ ICPSLV(10)
 COMMON/FECOM1/ MXNE,NE,MXNP,NP
 COMMON/FECOM4/ NNODE,NDOF,NER,NDIM
 COMMON/IOPHC / IOPHC
 COMMON/MATMDI/ IMATM,IPORF,IPERE
 IF(IUN.LT.1) GOTO 30
 IF(IEND.NE.O) GOTO 10
 READ (IUN, END=10) NSTEP,TIME,DT, ICPSLV, IOP HCX,NPX,NDIMX
 WRITE (6,920) NSTEP,TIME,DT, IOPHCX,NPX,NDIMX
 920 FORMAT(6X,'HENDUX---NSTEP=', I3,' TIME=',1P,E9.3,
 1 ' ' DT=',1P,E9.3,
 2 ' IOPHC=',I1,'NP=',I4,' NDIM=',II)
 IF(IOPHCX.NE.IOPHC) THEN
 WRITE (6,930) IOPHCX, IOPHC
 FORMAT (/6X,' HFNDUX---IOPHCX=',I2,'.NE. IOPHC=', I2/
 6X,9X,'IOPHC=IOPHCX')
 IOPHC=IOP HCX
 ENDIF
 CALL HFNDU1 (PH,TE,TR,DU,PERM,IUN,IEND)
 IF(IEND.EQ.0) GOTO 20
 10 IEND=1
 WRITE (6,935) NSTEP,TIME,DT, ICPSLV, IOPHCX,NPX, NDIMX
 935 FORMAT (6X,'HFNDUX',66('-'),
 1 /6X,9X, 'NSTEP=',I3,' TIME=',1P,E10.3,
 2 ,DT=',1P,E10.3/
 3 6X,9X,'ICPSLV :',10I2/
 4 6X,9X,'IOPHCX=',I2,' NPX=',I4,' NDIMX=',II)
 WRITE (6,940) IUN,IEND
940 FORMAT (/6X,'HFNDUX---NOW read to End of Eile:',I3,' IEND=',I2/
 1 6X,'HFNDUX',66('-'))
 RETURN1
 20 CONTINUE
CC<<<<WRITE (6,950) IUN
 960 FORMAT(6X,'HFNDUX---NOw read nodal values on file:', I3)
 RETURN
```

```
 30 IEND=9
 WRITE(6,970) IUN,IEND
 970 FORMAT (/6X,'HFNDUX---No data have been input by this ',
 1 'subroutine --- IUN=',I2,' IEND=',I1)
 RETURN
 END
 H F N D U 1 - SUBROUTINE FOR UNFORMATTED INPUT/OUTPUT OF NODAL
 DATA
 SUBROUTINE HFNDU1(PH,TF,TR,DU,PERM,IUN,IEND)
 IMPLICIT REAL (A-H,O-Z)
 DIMENSION PH(NR),TF(NP),TR(NP),DU(MXNP,3),PERM(NP)
 COMMON/EQSOLV/ ICPSLV(10)
 COMMON/FECOM1/ MXNE,NE,MXNP,NP
 COMMON/FECOM4/ NNODE,NDOF,NEK,NDIM
 COMMON/IOPHC / IOPHC
 COMMON/MATMD1/ IMATM,IPORF,IPERF
 COMMON/MISCHK/ MISCHK
C-----
 IF (MISCHK.NE.0) WRITE (6,901) MXNE,NE,MXNP,NP
 901 FORMAT(6X,'HFNDU1---MXNE=',I4,' NE=',I4,' MXNP=',I4,' NP=',I4)
C------
 IF(IEND.NE.0) GOTO 80
 IF(IUN.EQ.0) GOTO 60
 IF(ICPSLV(1).GT.0) READ(IUN,END=60) PH
 IF(ICPSLV(2).GT.0) READ(IUN,END=60) TF
 IF(ICPSLV(3).GT.0) READ(IUN, END=60) TR
 IF(ICPSLV(4).GT.0) THEN
 WRITE (6,902) NDIM,NP
 902 FORMAT(/6X,'HFNDU1---NDIM=',I1,' NP=',I5)
 DO 10 K=1,NDIM
 READ (IUN) (DU(J,K),J=1,NE)
CC<<<<< WRITE (6,905) (DU(J,K),J=1,NP)
 905 FORMAT(6X,1P,6E12.3)
 10 CONTINUE
 ENDIF
 IF (IOPHC.EQ.1) READ (IUN) PERM
 IF(IOPHC.EQ.1) WRITE (6,906) (PERM(J),J=1,10)
 906 FORMAT(/6X,'HFNDU1---PERM:'/
 1 (6X,1P,6E10.3))
 RETURN
 6 0 ~ I E N D = 1
 80 WRITE (6,910) IEND,IUN
 910 FORMAT(/6X,'HENDU1---IEND=',I2,' IUN=',I2)
 RETURN
C--
 H F N D U 2 - ALTERNATIVE ENTRY TO OUTPUT NODAL DATA TO A
 DISC FILE
C---
 ENTRY HFNDU2(PH,TF,TR,DU,PERM,IUN)
 IF(ICRSLV(1).GT.0) WRITE(IUN) PH
```

```
 IF(ICPSLV(2).GT.0) WRITE(IUN) TF
 IF(ICPSLV(3).GT.0) WRITE(IUN) TR
 IF(ICPSLV(4).GT.0) THEN
 DO 110 K=1,NDIM
110 WRITE(IUN) (DU(J,K),J=1,NP)
 ENDIF
 IF(IORHC.EQ.1) WRITE (IUN) EERM
 RETURN
 END
```

    H \(F\) S A \(V\) D - SUBROUTINE TO STORE RESULTS ON A FILE
    SUBROUTINE HFSAVD (PH,TF,TR,DU,PERM,NSTEP,TIME,DT,IUN)
    IMPLICIT REAL ( \(A-H, O-Z\) )
    DIMENSION PH(MXNP),TF (MXNP),TR(MXNP),DU(MXNP, 3), PERM (MXNP)
    COMMON/EQSOLV/ ICPSLV(10)
    COMMON/FECOM1/ MXNE,NE,MXNP,NP
    COMMON/EECOM4/ NNODE,NDOF,NER,NDIM
    COMMON/IOPHC / IOPHC
    COMMON/MATMD1/ IMATM,IPORF,IPERF
    IF(IUN.EQ.0) GOTO 40
    WRITE (IUN) NSTEP,TIME, DT, ICPSLU, IOPHC, NP, NDIM
    CALL HFNDU2 (PH,TF,TR,DU,PERM,IUN)
    WRITE \((6,910)\) NSTEP, IUN,TIME,DT, NP, NDIM
    910 FORMAT ( 6X,' HFSAVD---NOw written results of time step:', I3,
1 , on unit:',I3/
2 6X,9X,'TIME=',1P,E15.7,' DT=',1P,E15.7,
3 ' $\mathrm{NP}=$ ', I4,' NDIM=',I1)
WRITE $(6,911)$ ICPSLV, IOPHC
911 FORMAT ( 6X,9X,'ICPSLV=',10I2,' IOPHC=', I2)
RETURN
40 WRITE $(6,950)$ IUN
950 FORMAT (/6X,'HFSAVD---IUN=',I2,' No data were stored')
RETURN
END

References to studies where GWHRT model has been used:

## Groundwater and heat flow

1. Thunvik,R. and Braester, C., 1980, Hydrothermal conditions around a radioactive waste repository, Part 1 - A mathematical model for the flow of groundwater and heat in fracture rock, part 2 - Numerical solutions, Part 3 - Numerical solutions for anisotropy, SKBF-KBS-TR:80-19.
2. Thunvik, R., Braester, C., 1982.

Hydrothermal Conditions around a Radioactive Waste Repository, Proc. of the Fifth International Symposium on Radioactive Waste Management, Berlin (West), June 1982.
3. Thunvik, R., Braester, C.r 1984.

Radioactive Waste Repositories in Hard Rock Aquifers Hydrodynamic Aspects, Nuclear Technology, November 1984, pp. 255-267.

## Unsaturated flow

4. Thunvik, Roger, 1984, Calculations of fluxes through a repository caused by a local well, SKBF.KBS-TR:83-50.

## Gas migration

6. Thunvik, R., Braester, C., 1986,
"Calculation of gas migration in fractured rock", SFR-progress report 86-04.
7. Thunvik, R., Braester, C., 1987, "Calculation of gas migration in fractured rock", SKB-Technical report 87-18, Swedish Nuclear Fuel and Waste Management Company.
8. Braester, C, Thunvik, R. 1987,
"Gas migration from low level radioactive waste repositories" (Accepted for publication in Nuclear Technology).

## Stochastic analvsis

9. Andersson, J., Thunvik, R., 1986,
"Prediction of mass transport in discrete fracture networks with the aid of geometrical data", Water Resources Research Vol. 22, No 13, Pages 1941-1950, December 1986.

## Hydrocoin

1. Thunvik, Roger, 1987, "Calculations on Hydrocoin level 1 using the GWHRT flow model

Case 1 - Transient flow of water from a borehole pene-
trating a confined aquifer

Case 3 - Saturated-unsaturated flow through a layered sequence of sedimentary rocks
Case 4 - Transient thermal convection in a saturated medium
SKB Technical Report 87-03, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden.
2. Thunvik, Roger, 1987, "Calculations on Hydrocoin level 2, case 1 using the GWHRT flow model - Thermal convection and conduction around a field heat transfer experiment", SKB Technical Report 87-04, Swedish Nuclear Fuel and Waste Management Co, Stockholm, Sweden.

## Specification of level 1 , case 1

1. Hodginson, D. and Barker, J., 1985, Specification of a test problem for HYDROCOIN Level 1 Case 1: Transient flow from a borehole in a fractured permeable medium, AERE - R 11574, HARWELL.

## Specification of level 1 , case 3

1. Grundfeldt, Bertil, 1984, Proposal for a test problem for Hydrocoin Level 1 , Case 3 , saturated-unsaturated flow through a layered sequence of sedimentary rocks, Kemakta Consultants Co.

## Specification of level 1 , case 4

1. Hodginson, D., 1985, Specification of a test problem for Hydrocoin Level 1 Case 4: Transient thermal convection in a saturated permeable medium, AERE -R - 11566, DOE/RW/84.198.

## Specification of level 2 , case 1

2. Hodginson, D. and Herbert Alan, 1984, Specification of a test problem for Hydrocoin Level 2 Case 1: Thermal convection and conduction around a field heat transfer experiment, AERE -R 11627, DOE/RW/84, January 1985.
3. Hodginson, D. and Herbert Alan, 1985, Specification of a test problem for Hydrocoin Level 2 Case 1: Thermal convection and conduction around a field heat transfer experiment, AERE -R 11627, DOE/RW/85.028.

## List of SKB reports

Annual Reports
1977-78
TR 121
KBS Technical Reports 1-120.
Summaries. Stockholm, May 1979.
1979
TR 79-28
The KBS Annual Report 1979.
KBS Technical Reports 79-01-79-27.
Summaries. Stockholm, March 1980.
1980
TR 80-26
The KBS Annual Report 1980.
KBS Technical Reports 80-01-80-25.
Summaries. Stocknolm, March 1981.
1981
TR 81-17
The KBS Annual Report 1981. KBS Technical Reports 81-01-81-16. Summaries. Stockholm, April 1982.

1982
TR 82-28
The KBS Annual Report 1982.
KBS Technical Reports 82.01-82-27.
Summaries. Stocknolm, July 1983.
1983
TR 83-77
The KBS Annual Report 1983.
KBS Technical Reports 83-01-83-76
Summaries. Stockholm, June 1984.
1984
TR 85-01
Annual Research and Development Report 1984
Including Summaries of Technical Reports Issued during 1984. (Technical Reports 84-01-84-19)
Stockholm June 1985.

## 1985

TR 85-20
Annual Research and Development Report 1985
Including Summaries of Technical Reports Issued during 1985. (Technical Reports 85-01-85-19) Stockholm May 1986.

## 1986

TR 86-31
SKB Annual Report 1986
Including Summaries of Technical Reports Issued during 1986
Stockholm, May 1987

1987
TR 87-33
SKB Annual Report 1987
Including Summaries of Technical Reports Issued during 1987
Stockholm, May 1988

## Technical Reports

1988
TR 88-01
Preliminary investigations of deep ground water microbiology in Swedish granitic rocks
Karsten Pedersen
University of Göteborg
December 1987

TR 88-02
Migration of the fission products strontium, technetium, iodine, cesium and the actinides neptunium, plutonium, americium in granitic rock
Thomas Itner', Börje Torstenfelt ${ }^{1}$, Bert Allard ${ }^{2}$
${ }^{1}$ Chalmers University of Technology
${ }^{2}$ University of Linköping
January 1988

## TR 88-03

Flow and solute transport in a single fracture. A two-dimensional statistical model Luis Moreno1, Yvonne Tsang², Chin Fu Tsang², Ivars Neretnieks ${ }^{1}$
1Royal Institute of Technology, Stockholm, Sweden
${ }^{2}$ Lawrence Berkeley Laboratory, Berkeley, CA, USA January 1988

## TR 88-04

Ion binding by humic and fulvic acids: A computational procedure based on functional site heterogeneity and the physical chemistry of polyelectrolyte solutions
J A Marinsky, M M Reddy, J Ephraim, A Mathuthu US Geological Survey, Lakewood, CA, USA
Linköping University, Linköping
State University of New York at Buffalo, Buffalo, NY, USA April 1987

TR 88-05
Description of geophysical data on the SKB database GEOTAB
Stefan Sehistedt
Swedish Geological Co, Luleá
February 1988

TR 88-06
Description of geological data in SKBs database GEOTAB
Tomas Stark
Swedish Geological Co, Luleá
April 1988

TR 88-07
Tectonic studies in the Lansjärv region
Herbert Henkel
Swedish Geological Survey, Uppsala
October 1987

TR 88-08
Diffusion in the matrix of granitic rock.
Field test in the Stripa mine. Final report.
Lars Birgersson, Ivars Neretnieks
Royal Institute of Technology, Stockholm
April 1988

TR 88-09
The kinetics of pitting corrosion of carbon steel. Progress report to June 1987
G P Marsh, K J Taylor, 2 Sooi
Materials Development Division
Harwell Laboratory
February 1988


[^0]:    2.3.5.3 Basis functions

[^1]:    2.3.13

