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ABSTRACT 

The permeability of a fractured hard rock formation is usually 

calculated using the recorded overpressure and the rate of flow 

during a double packer test. Existing formulae assume that the 

formation is both homogeneous, and isotropic, and that the bore

hole is sealed in the region outside the packers, but in practice 

these assumptions are not fulfilled. The objective of the present 

investigation is to check the influence on the calculated rock 

permeability of inhomogeneities, anisotropy and return of flow 

from the formation into the unsealed part of the borehole by nume

rical simulation of double packer tests. For this purpose differ

ent formations with known permeabilities were considered. 
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SUMMARY AND CONCLUSIONS 

Packer tests are the most commonly used means of determining frac

tured hard rock permeability. Double packer tests are extensively 
used by SGU (Swedish Geological Survey), in the frame of the KBS 
(Nuclear Fuel Safety) project, to determine the rock permeability 

at prospective sites for nuclear fuel waste repositories. During 

such a test, water is injected into the formation in the space 

between the packers. The applied overpressure and the rate of flow 

are recorded at quasi-steady state and used for the calculation of 

the permeability. 

Fractured hard rock formations are usually highly inhomogeneous 
and anisotropic, but permeability is calculated by using formulae 

assuming homogeneity and isotropy. In addition, the borehole is 
considered impervious in the region outside the packers, while in 

fact it is unsealed and pervious. 

The aim of the present investigation is to check the effect of de

viations from these assumptions on the calculated permeability. 
For this purpose double packer tests were simulated on synthetic 

formations, with a priori known permeabilities. The tests were 
carried out using a numerical flow model, and simulating condi
tions similar to those appearing in the field. 

As in a real packer test, the applied overpressure and the inject

ed rate of flow are used for the calculation of permeability, us

ing formulae assuming homogeneity, isotropy and no flow into the 

borehole. The calculated permeability is compared with the known 

permeability in the numerical model. 

The only known method with a sound theoretical support, for the 

interpretation of double packer tests, is the one presented by Da

gan (1978). However, one of the most commonly applied formula is 

Moye's formula, which is based on a presupposed flow pattern and 
has no rigorous theoretical foundation. As this is the formula 

used by SGU, it is of great interest to check its reliability. 

In the present investigation results based on Moye's formula are 
compared with those obtained by Dagan's method. It was found that 

Moye's formula overestimates the permeability in homogeneous and 
isotropic formations by 17 %, It may therefore be concluded that 
Moye's formula gives a fairly good approximation for most practi

cal purposes. 
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The numerical simulations worked out in this report are organized 

in four groups: 

(a) The first group deals with homogeneous and isotropic forma

tions. 

A first series of runs was caried out with a sealed borehole, in 

order to compare the results of the present numerical.method with 

those obtained by using Dagan's (1978) method. The difference 

between the permeability values calculated by the present numeri

cal method and Dagan's method is about 5 %. 

In a second series of runs an unsealed borehole is considered in 

order to check the influence of the flow from the formation into 

the borehole, in the region outside the test section. The effect 

of the return of flow is often a matter of discussion and contro

versy. 

The present study shows that, if the packer length is 0,30 metres, 

then about half of the injection rate into the formation is dis

charged into the borehole. On the other hand, for a given over

pressure, the rate of injection is practically unaffected by the 

flow return. As the injection rate is one of the basic parameters 

used in the calculation of the permeability, the permeability will 

be the same as for an ideally sealed borehole. 

In the case of an unsealed borehole the permeability calculated by 

Moye's formula is overestimated by a factor of 1.4, versus 1.2 in 

the case of a sealed borehole. 

(b) A second group of simulations deals with inhomogeneous iso

tropic formations. 

Two types of inhomogeneities are considered: (i) a region of low 

permeability near the borehole, and (ii) an inhomogeneity in the 

vertical section. 

The low peremeability region is considered to be caused by a so 

called "borehole skin" of small thickness. The "skin" effect may 

be due to mechanical or biological clogging or to a decrease in 

the fracture width as a result of stress redistribution in connec

tion with the drilling of the borehole. Formulae developed for 

homogeneous formations, such as Moye's formula, give values closer 

to the low permeability of the "skin", than to the real permeabil

ity of the formation. 
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Vertical inhomogeneities are observed in most of the permeability 

logs performed by SGU. However, the calculated permeability is 
attributed to the section of investigation of 2 metres, as if it 
were unaffected by the permeability of the adjacent regions. To 
evaluate the effect of vertical inhomogeneity, we have investigat

ed a formation with a different permeability in the region between 
the packers, than in the adjacent regions. 

When using Moye's formula, the permeability of the tested section 

between the packers may be underestimated as well as overestimat

ed, depending on the permeability of the adjacent region. However, 

the factor of underestimation or overestimation is relatively mod
erate (varying from 0.7 to 1.8) even for strongly contrasting 
permeabilities. 

(c) A third group of simulations deals with anisotropic homogene

ous formations. Only the effect of anisotropy with the principaJ 
directions along the horizontal and the vertical axes is investi

gated. Anisotropy ratios of 1/10 and 1/100, either of the hori

zontal to the vertical component or vice versa, are considered. 

For a sealed borehole, Moye's formula gives more or less the value 
of the horizontal permeability. For an unsealed borehole and low

er permeability in the vertical direction, the behaviour is simi
lar to that of a sealed borehole. Higher permeability in the ver

tical direction affects the calculated permeability only for very 
large anisotropy ratios (kv/kh), of the order of 100. 

(d) The last group of simulations deals with discrete media. 

Two different settings are considered: (i) a fracture network and 

(ii) an isolated fracture. The discrete medium considered is one 

with a relatively high fracture density, which can be treated in 

principle by the continuum approach. 

Good quality rocks are characterized by low fracture density and 
poor connections between the fractures. In such rocks the section 
of investigation, between the packers, may be intersected by a 

single fracture only, poorely connected or completely unconnected 

to other fractures. The flow through an isolated fracture is 

two-dimensional, and the flow pattern is thus quite different 
from the three-dimensional flow pattern presupposed in Moye's for
mula, 
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When investigating a fractured formation one deals with an unknown 

fracture configuration. In practice, the permeability is calcu

lated by using formulae assuming three-dimensional flow patterns, 

e.g. Moye's formula. 

Although Moye's formula is not appropriate for calculating the 

permeability of an isolated fracture, the results of- the present 

investigation show that it underestimates the permeability of an 

isolated single fracture only by a factor of about 0.4. 

For a fracture with a low permeability region near the borehole 

the same conclusions as for a homogeneous formation may be drawn. 

The results of the present investigation lead to the following 

conclusions: 

Flow return from the formation into the unsealed region of the 

borehole outside the packers has no significant influence on the 

caculated permeability 

- For homogeneous and isotropic formations Moye's formula can be 

considered a good approximation for most practical purposes. 

- Inhomogeneities in the formation in the region outside the pack

ers, have no significant influence on the calculated permeabili

ty of the region between the packers. 

- In anisotropic formations with the principal directions of the 

anisotropy along the horizontal and vertical axes, Moye's formu

la gives more or less the horizontal component. The vertical 

component is scarcely reflected at all in the results. 

A low permeability region near the borehole, e.g. due to a 

"borehole skin" significantly distorts the representative perme

ability of the formation, when calculated by Moye's formula. In 

such cases the permeability of the formation may be underesti

mated by several orders of magnitude. 

- Vertical anisotropy and "borehole skin" have not been suffi

ciently investigated in the field, which means that their real 

importance is still unknown. The results of this investigation 

should draw attention to their relative importance. 
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On the basis of the present study the following recommendations 

are given: 

- To study methods for testing anisotropic permeability. 

- To study the conditions under which "borehole skin" occurs. 

To study methods of testing in which the results are unaffected 

by the "borehole skin". 

- To study methods of field investigations 

on the type of the medium present, and 

between the fractures. 

providing information 

on the connectivity 

- Prior to field tests, to investigate the considered methods by 

means of a numerical model, such as the one presented here. 

Such investigations enable the study of the test behaviour and 

its sensitivity to various parameters, and better planning of 

the field test considered. With a numerical model one can also 

obtain numerical solutions valuable for the determination of the 

investigated field parameters. 
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1. INTRODUCTION 

1.1 General 

The conventional method of determining hard rock permeability is 

the double packer test. This method is extensively used by SGU 

within the Swedish KBS - project. During such a test, water is 

injected at constant pressure through the section between the 

packers. The permeability is calculated using the recorded pres

sure and the rate of flow at a quasi-steady state. If the test is 

performed below a certain depth, say below 100 m. and the quanti

ties of the injected water are small, then the position of the 

phreatic surface remains practically unaffected and may therefore 

be treated as a fixed boundary. 

The flow through pervious formations such as porous media is des

cribed mathematically by partial differential equations, using the 

continuum approach. In these equations, the properties of the for

mation are represented by continuous functions, defined at each 

mathematical point. With the continuum approach, one attributes to 

each mathematical point, the average value of the property in a 

small surrounding volume. A parameter, e.g. porosity at a point 

is a smooth and continuous function, only if this volume is larger 

than a certain size (physical point, representative elementary vo

lume, etc.). Yet in order to be considered "a point", the physical 

point must be small in comparison with the flow domain. 

The continuum approach may be applied to some types of fractured 

rocks. The question of the size of the physical point relative to 

the flow domain becomes critical when treating fractured rocks by 

the continuum approach. It is obvious that the types of fractured 

rocks amenable to the continuum approach are those with well de

veloped fracture systems. Then the blocks play the role of the 

solid grains and the fractures play the role of the intergranular 

voids. 

The permeability of the fractured formation depends on the width, 

spacing and orientation of the individual fractures. In hard rock 

formations one may expect large variations in the values of these 

parameters, implying a high degree of inhomogeneity and anisotro

py. The permeability logs of the boreholes investigated by SGU 

show a large variation in the permeability along the boreholes. 
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In addition to the natural inhomogeneities a region of low permea

bility may occur near the borehole as a "borehole skin". The 

"borehole skin" may among others be caused by: drilling with un

treated water, which may cause deposition of bacteria, and drill

ing with water incompatible with the formation or with the forma

tion water, which could lead to changes in the mineral composition 

of the filling material of the fractures or to the formation of 

precipitates. 

Another reason for a low permeability near the borehole, may be 

the stress redistribution as a direct consequence of the drilling 

of the hole. Stress redistribution may change the initial openings 

of the fractures, changing the fracture permeability. Increase or 

reduction in the fracture width depends on the initial state of 

tension or compression of the rock mass. Because of the propor

tionality of the permeability to the square of the fracture width, 

small changes in the openings of the fractures may lead to consid

erable changes in the rock permeability. 

When investigating a prospective site for a radioactive repository 

one looks for rocks with low fracture density and poor connection 

between the fractures. Hard rock formations may include regions 

of dense fracturing, for which the assumption of continua holds, 

as well as regions intersected by a few fractures, with a poor 

connection between them, for which the continuum approach certain

ly fails. Stokes (1980) has formulated the conditions under which 

a fractured rock formation may be treated as an ordinary porous 

medium. He has also proposed an interesting field test to check 

if the stated requirements are fulfilled for a particular medium. 

The solution of the partial differential equations for a flow 

problem expresses a relationship between the flow parameters e.g. 

rate of flow, pressure, etc. and the parameters of the formation 

such as permeability, porosity, etc. The solution for the proper

ties of the formation as unknown parameters, i.e. the inverse 

problem, is in general not unique. A unique interpretation of a 

packer test can be made only for a homogeneous and isotropic for

mation. 

A mathematical solution is possible in most cases, on the basis of 

oversimplifying assumptions. In the case of the packer test prob

lem, one uses the equations of flow based on the continuum ap

proach. Moreover the existing methods for the determination of the 
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permeability assume that the formation being tested is both homo

geneous and isotropic. 

The method for the interpretation of packer tests presented by Da

gan (1976) appears to be the only one with a sound theoretical 

basis. However, the formula most commonly used in practice, for 

instance by SGU in the framework of the Swedish KBS - project, is 

Moye's (1967) formula. Both methods assume that the formation be

ing tested is homogeneous and isotropic, and that there is no flow 

from the formation into the borehole. 

Moye's formula presupposes a specific flow pattern which may be 

significantly different from the actual one. It therefore lacks 

theoretical support, and its applicability has not yet been 

checked. Despite this uncertainty, Moye's formula is used exten

sively, mainly because of its simplicity. It was initially used 

for the exploration of the foundations of dams, tunnels etc., 

where the accuracy of determining permeability is less crucial 

than that required for the prospective sites for radioactive waste 

repositories. Since the travel times of contaminated water parti

cles from the repository to the biosphere is directly related to 

the permeability, the order of magnitude of this parameter is cri

tical in the selection of the site for a radioactive repository. 

In some rocks the tested region between the packers may be inter

sected by a single fracture only, with poor connection with other 

fractures. In such a case, the flow takes place in the plane of 

the fracture i.e. in a two-dimensional space. 

When investigating a fractured rock formation it is impossible to 

obtain a detailed physical description of the medium. As already 

pointed out, unless the formation is homogeneous and isotropic 

there does not exist a unique solution to the inverse problem of 

the packer test. Therefore, in interpreting and calculating the 

permeability by using the results of a packer test, we are limited 

to the use of formulae for homogeneous and isotropic formations. 

It of great interest to investigate how inhomogeneity, anisotropy 

and flow from the formation into an unsealed borehole is reflected 

in the results of a packer test. As the existing solutions do not 

consider these effects, we have solved the problem by a numerical 

method. Because Moye's formula has been used by SGU, we have com

pared the results obtained by the numerical method with those ob-
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tained by Moye's formula. 

1.2 Cases investigated 

The following cases have been investigated: 

- A homogeneous and isotropic formation. The results of a first 

series of simulations with a sealed borehole are compared with 

the results of Dagan's solution in order to validate the numeri

cal model used for the simulations. In a second series of simu

lations the influence of flow from the formation into an unseal

ed borehole has been investigated. 

- An inhomogeneous formation. The types of inhomogeneities consid

ered are: (i) a low permeability region near the borehole and 

(ii) horizontal layers adjacent to the test section. 

An anisotropic formation with the principal directions of aniso

tropy aligned with the coordinate axes. 

- Discrete formations: a fracture network and a single fracture. 

l·l Method of investigation 

The present investigation is based on a set of numerical simula

tions of packer tests performed in synthetic formations, implying 

that the properties of the considered flow domain are known a 

priori. The results of the simulated test are used for the calcu

lation of the permeability using various approximate methods, e.g. 

Moye's formula and the obtained value is compared with the known 

permeability. 
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2. MATHEMATICAL FORMULATION OF THE FLOW PROBLEM 

2.1 Basic concepts 

The flow through the fractured rock formations in consideration is 

assumed to obey Darcy's law. The test section is assumed to be 

located at such a depth that the boundaries have no influence on 

the flow in the surroundings of the tested region. 

2.2 Basic equations of the flow model 

The flow pattern during a packer test is axissymmetric, and the 

following equation is considered 

k a (r _r ~) r 8r jJ or 
k 

a c z ~) = 0 
dZ \l dZ 

( 2. 1) 

where 

rock (c 

cp is porosity, c is the total compressibility of water and 
f r 

= c + c ) , µ is the dynamic viscosity of the water, k r 
and k are the 

z 
permeabilities in the r- and z-direction, respec-

ti vely, and <P is the potential, here defined as 

<P = p + pgz (2.2) 

where P is pressure, p is the density of the water and g is the 

acceleration of gravity. 

Equation (2.1) is solved with the appropriate boundary and initial 

conditions (2.8) to (2.12), using the Galerkin finite element 

method. 

Dimensionless form of equations 

In the present analysis the dimensionless form of equation (2.1) 

for a homogenous and isotropic formation will be considered, and 

the following dimensionless parameters are defined 

r 
rd = - (2.3) H 

z (2.4) 
zd -

H 

tk (2.5) 
td = 4>cµH 2 
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<P. - <P 
q, = _1. __ 

d M 
(2.6) 

where His a characteristic reference length, <P. is the initial 
1. 

potential, and 6<P some potential difference chosen as a reference 

value. 

Using the above definitions, equation (2.1) is written in dimen

sionless form in the following way 

clz 2 
d 

(2,7) 

The advantage of using the dimensionless parameters, defined by 

equations (2.2) to (2.5), is that the results obtained for one set 

of parameter values may be applicable also to other parameter 

sets. 

2.4 Boundary and initial conditions 

The aquifer is assumed initially to be at hydrostatic conditions 

or at constant potential 

t = 0 <P = <P. 
1. 

(2.8) 

In the region between the packers water is injected at constant 

pressure creating a potential difference 6<P (Fig. 2.1). 

r = r 
w 

L L 
--<z<-

2 2 
<P = <P. + M 

1. 
(2.9) 
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,----------- ------·-·7 
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I 
' 

I 

Z=O--· --L 

packer 

packer 

I 

I 

I 
' 

' 

I 
L _______ _ 

I 
______ _J 

Figure 2.1 Sketch for nomenclature. 

Under ideal conditions where the borehole is sealed flow takes 

place only in the region between the packers. 

clC' 
= 0 3r (2.10) 

If the borehole is unsealed, then water can flow from the forma

tion into the borehole. Because of the small flow rates from the 

formation into the borehole, it may be assumed that the water in 

the borehole is stagnant, i.e. at a constant potential. 

cl> (2.11) 

where Bis the length of the packer. 

At infinity the potential remains unaffected and equal in value to 

the initial potential. 

r -+ co cl>= cl>. (2.12) 
1. 

In the numerical treatment, the flow domain must be given finite 

dimensions, which should be larger than the radius of influence 

during the test in order to simulate an infinite flow domain. 

Typical flow patterns with unsealed and sealed boreholes are pre-
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sented in figures 2.2 and 2.3, respectively • 

•. I I.I l.t I.I I.I I.I I.I 

I.I 1,1 I.I I.I I.I I.I 

Figure 2.2 Typical flow pattern during a permeability test with 
an unsealed borehole. 

l.t 1,1 I.I 1,1 l.t I.I 1,0 
•. ,+'-',-........................... u..u. ......................... 4-

I.I I.I I.I I.I 1,1 1,1 1,1 

Figure 2.3 Typical flow pattern during a permeability test with a 
sealed borehole. 

2.5 Existing methods 

No solutions are known for equation (2.1) under the conditions 

given by (2.8) to (2.12). Here we will review only Moye's formula, 

Bank's formula and Dagan's solution. The limitations of these so

lutions have been discussed in chapter 1. 

2.5.1 Moye's formula 

Moye (1967) assumes that the flow is radial in the region near the 

borehole and spherical in the rest of the flow domain. The tran-

sition between radial and spherical flow is assumed to take place 
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at a distance of r = 0.5 L from the borehole, where Lis the dis

tance between the packers. 

Combining the steady-state equations for radial and spherical 

flow, Moye obtains 

L k = (1 + ln(h)) µQI 2nL6P (2.13) 
w 

where 6P is the injection overpressure and Q is the rate of flow. 

2.5.2 Bank's formula 

Bank (1972) suggested the following dimensionless form of equa

tion (2.13) 

Lk6P / µQ = C 

and proposed C = 1, instead of C 

formula. However, the value of C 

Bank, has no foundation. 

2.5.3 Dagan's method 

(2.14) 

= (1 + ln(L/2r ))/2~in Moye's 
w 

equal to one, as suggested by 

Dagan (1977) presented an approximate solution by using the method 

of distributed sources along the axis of the borehole. The solu

tion, in an integral form is approximated by a finite sum 

(q.µ/k) A .. = 6P 
l lJ 

(i,j = 1, ... N) (2.15) 

where N is the number of intervals into which the length Lis di

vided, k is permeability, qi is the rate of flow corresponding to 

the interval i and 6P is overpressure. 
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The A .. matrix is given by 
lJ 

A., 
J.J 

m=+M I a. . /+a. . + (r2 /2 I a. . I ) = ( 1/ 4n) ln IT ____ i....;J:-m __ i.:::.Jm ___ w __ _::i..::.J:.:.;m _____ x 

m=-M I a. , - tiL J +a. . - 6L+ (r 2 /2 Ja. . - tiL J ) J.Jm J.Jm w iJm 

le .. - tiLl+c .. - 6L+(r2;2Jc .. - tiL!) J.Jm lJm w :iJm _......_ ____ ---"-____ _;.;__ _ _:::_~--- X 

I c. . I +c. . + (r2 /2 I c. . I) :iJm J.Jm w J.Jm 

I d . . - 6L I +d . . -
:1 JID :1 Jm 

la .. !+a.. + :i Jm :i Jm 

where Mis the number of images and 

a .. = (j-i+0,5)6L - 4.TTID 
:1 JID 

b .. = (j+i+0.5)6L - 2D1 + 2(2m + l)D 
:i Jm 

c. . = b. . - 2D 
:i Jm :i Jm 

d.. = a.. + 2D 
:1 JID :1 JID 

tiL+ (r2 /2 Id. . - 6L I ) w iJm 

(2.16) 

(2.17) 

Dis the thickness of the aquifer, D1 is the distance from the wa
ter table to the lower packer and ~L = L/N. 



For D >1.2 D1 equation (2.16) can be approximated by 

A .. 
l. J 

I a. . I +a. . + (r2 /2 I a. . I ) 
1.JO l.JO W l.JO 

= ( 1/ 4n) ln -----....:t----"'--------"----- x 
la .. - llLl+a .. - llL+(r2 /2la .. - llLI) 

l.JO l.JO W l.JO 

le .. - llLl+e .. - 6L+(r2/2le .. - llLI) 
l.JO l.JO W l.JO 

le .. l+e .. +(r2 /2le .. I> 
l.JO l.JO W l.JO 

1 1 

(2.18) 

Dagan's solution is used for comparison with Moye's formula as 

well as for the validation of our numerical method. 

2.6 Comparison between Dagan's method and Moye's formula. 

Dagan calculated the rate of flow by using equations (2.15), 

(2.17) and (2.18) and presented the results in a dimensionless 

form (figure 2.4) 

Qµ/2TT k16P = f(L/r) 
w 

for a wide range of L/r values. 
w 

Qµ/21rhkDP 

0.4 

0.3 

0.2 

0.1 

0 
1.0 1.5 2.0 2.5 3.0 3.5 

(2.19) 

log(L/rwl 

Figure 2.4 Dimensionless rate of flow as a function of L/r (aft-
er Dagan, 1978). w 

A comparison of equations (2.19) and (2.14) leads to the conclu

sion that for Dagan's solution 

C = 1/2TT f(L/r) 
w 

(2.20) 
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The coefficients C in Dagan's solution and in Moye's formula are 

compared for L/r values ranging between 35.7 and 179.0 (log(L/r) 
w w 

= 1.55 to 2.25). For a radius of borehole of 0.028 metres, this 

range corresponds to L values between 1 and 5 metres 

We calculated the rates of flow corresponding to this range of va

lues by dividing the length L between the packers into 20 inter

vals, For L/r = 35.7 and L/r = 179.0, the dimensionless rates 
w w 

of flow of 0.315 and 0.206, respectively, are obtained. The cor-

responding C values are 0.505 and 0.77, respectively. 

In the same range of L/r, the values of C in Moye's formula are 
w 

0.618 and 0.874, respectively. In the first case Moye's formula 

overestimates the permeability value by a factor of 1.22, while in 

the second case by a factor of 1.13. Bank's C = 1 is too different 

from the "true" C value and should be excluded. 

The value of L/r in the SGU double packer tests is 71.4. For this 
w 

value, the error in Moye's formula as compared with Dagan's solu-

tion is 

(S1 - ~)/~ = (0.730-0.622)/0.622 = 0.17 

This means that with the same assumptions as in Dagan's solution, 

Moye's formula overestimates the permeability by 17 %. One may 

conclude that Moye's formula can be considered a fairly good ap

proximation for most practical purposes. 

2.7 A numerical method. 

Because Dagan's solution and Moye's formula are limited to homoge

neous isotropic formations and sealed boreholes, a more general 

solution is necessary for the purposes of the present investiga

tion. 

A solution to equation (2.1) with the boundary and initial condi

tions expressed by equations (2.8) to (2.12) is obtained by the 

Galerkin finite element method. 

Equation (2.1) can be written as 

(~c) ~ = _l_(k f _E!) + cl (k f cl<P) 
~ r clt clr r r clr az" z r clz 

(2.21) 

where 



where 

f 
r 

r 
= -

)J 
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(<Pc) 
r 

= r<j)c (2.22) 

According to Galerkin's method the approximate solution is ob

tained in the form of a finite sequence 

<P(x.,t) = <P (t) s (x.), 
i n n i 

(n=1 ,2, ... N) (2.23) 

where sis a set of N linearly independent coordinate functions 

and <P (t) are time-dependent coefficients. 
n 

Let the operator L(~) corresponding to (2.21) be defined as follows 

L(<P) = +, (k .. f ~ ) - (<j)c) ~ 
oXi lJ r dXj r dt 

(2.24) 

with i=1 for the r-direction, i=2 for the z-direction, and k =k , 
11 r 

k =k the principal directions of anisotropy. 
22 z 

Galerkin's method requires that L(<P) be orthogonal to each of the 

N coordinate functions, i.e 

< L(<P),s > = 0 (2.25) n 

The time derivative cl<P/clt is calculated as the weighted mean over 

the entire flow domain (Neuman 1973), i.e. 

cl<P J cl<P J -;;-- = <Pcs -;:;--- d0. I ( <Pcs dD), 
ot D not D n 

(n=1,2, .. N) 

Combination of eqs. (2.23) to (2.26) yields 

as a 
<P f ~ (k .. 

m D oxi lJ 
f _m) dD -
r ax. 

a <ti 
m 

clt 

J 

6 () ft<Pds dD = 0, m n D ~'en 
(m,n = 1,2, ... N) 

where (n) indicates that the summation is only over m. 

(2.26) 

(2.27) 

In this study the elements are triangles and the basis functions 

are linear functions of the coordinates. 

A similar equation to (2.27) holds for each individual element 
with a basis function expressed in local coordinates instead of 

the global coordinates. 
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Transforming the first integral of eq. (2.27) by Green's theorem, 

writing equations similar to (2.27) for each element (e) and as

sembling, one obtains 
(e) (e) (e) 

I: (k., f <P 3~ /3x.)(3~ /3x.)dD + I: (clip /3t)o ( )(rpc) ~ dD + 
(e) l.J r m m l. n l. (e) m m n r n 

+ I: f q ~ ar = o 
e r n n (m,n = 1,2, ... N), (i,j = 1,2) (2.28) 

where q is the rate of flow through the side of the element. One 

assumes that at any time q is constant along each side of the 

element, kij and~ are considered constant in each element, while f 

and c vary linearly according to the relations 

( e) 

(~c) r = (~c) rQ, ~Q, 

where£ represents the corner of the triangle. 

(2.29) 

The time derivative in eq. (2.27) is expressed as a backward fin

ite difference which leads to a fully implicit scheme. With these 

assumptions, after some mathematical manipulations, eq. (2.27) can 

be written in the form 

k+l k k+l 
I: (A + Fnrn /~tk) m 

(e) nm 

k k k 
= q + F qi /Mk 

n nm n 
(2.30) 

where 

(e) (e) (e) 
A = I: f n k .. f ~ ( 3 ~ /3x.) ( 3 ~ /3x.) dD 

nm e rx. l.J D n 1. m J 
(2.31) 

(2.32) 

and q is the rate of flow at the nodal point. Equation (2.32) re-

presents a linear set of algebraic equations which is solved under 

the initial and the boundary conditions expressed by equations 

(2.8) to (2.12). 
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3. NUMERICAL SOLUTIONS 

The permeability of a hard rock formation is calculated by formu

lae based on the assumptions of homogeneity and isotropy in spite 

of the fact that actual formations are inhomogeneous and aniso

tropic. In addition, the existing solutions do not account for 

the flow from the formation into the unsealed region of the bore

hole, outside the packers. 

The purpose of the present simulations is to check the error in 

the calculated permeability of some models of inhomogeneous and 

anisotropic formations when using any of the above formulae. The 

simulations presented have been carried out using a computer pro

gram based on the numerical method of solution. In this method 

the flow domain is discretized into triangular elements. 

The calculations have been carried out for a sealed as well as an 

unsealed borehole. In both cases point Min figure (2.1) of the 

flow domain is a singular point with a theoretically infinite vel-

ocity. If the borehole is unsealed, then also point N is singu-

lar. This calls for some caution in the discretization of the 

flow domain in the immediate neighbourhood of these points. The 

sensitivity of the solutions with respect to the degree of refine

ment of the mesh has been checked in order to determine the re

quired refinement of the element mesh. 

Input parameters 

Distance between the packers (L) 

Packer length (B) 

Borehole radius (r) 
w 

Water density (p) 

Dynamic viscosity of water(~) 

Total compressibility (c) 

Overpressure (P) 

2 m 

0.3 m 

0.028 m 

1000 kg/m 3 

0.001 Pas 

4x10 5 Pa 

The numerical examples have been carried out for various permea

bilities of the flow domain. The results of the calculations, 

presented in tables (3.1) to (3.12), give the following informa

tion: 

- Value of true permeability (input) 

- Overpressure (input) 



16 

- Rate of flow into the formation (output). 

- Rate of flow out of the formation, into the unsealed part of the 

borehole (output). 

- Calculated peremability by Moye's formula (equation 2.13) 

- The C value in equation (2.14) calculated by using the calculat

ed rate of flow into the formation. 

- Value of C coefficient in Moye's formula (equation 2.13). 

C = (1 + (ln(L/2r ))/2TI 
w 

- Ratio of C coefficient in Moye's formula to the true value of 

coefficient c. This ratio equals the ratio of Moye's permeabili

ty to the true permeability of the formation. 

Homogeneous isotropic formation 

The numerical method is compared with Dagan's analytical solution 

for a homogeneous and isotropic formation and sealed borehole. 

Several simulations have been performed with different permeabili

ties and different injection pressures. The results are presented 

in table 3.1. 

The C value in equation (2.14) obtained by Dagan's solution for a 

borehole radius of 0.028 metres and a length between the packers 

of 2 metres (L/rw = 71.4) is 0.622 (paragraph 2.6). The dimen

sionless rate of flow calculated with the numerical solution is C 

= 0.590 (table 3.1). 

When compared with Dagan's solution, the relative error in the C 

value is 

(CD - C )/~ = (0.622-0.590)/0.622 = 0.0515 

or about 5.2 %. 
agreement between 

quite good. 

One may conclude from the above results that the 

the numerical and the analytical solutions is 

Moye's formula overestimates the permeability by a factor of 1,23 

(table 3,1). 

In a second series of simulations, the borehole is considered to 

be unsealed, The flow pattern with an unsealed borehole differs 

significantly from the flow pattern of a domain bounded by an im-
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pervious borehole (figures 3.1 and 3.2). With an unsealed bore

hole, about half of the injected flow rate escapes the formation 

into the unsealed region of the borehole (table 3.2). On the 

other hand, there is only a small increase in the rate of injec

tion into the formation, in comparison with a sealed borehole. 

One may conclude that changes in the boundary conditions along the 

borehole outside the packers do not cause a corresponding change 

in the injected rate of flow, and that one may therefore calculate 

the permeability of an unsealed borehole by formulae suitable for 

a sealed borehole. 

For an unsealed borehole Moye's formula overestimates the permea

bility by a factor of 1.38, as versus 1.23 with a sealed borehole 

(table 3.2). The above calculations have been performed on the 

assumption that the water level in the borehole does not vary as a 

result of the flow return. Actually, the water level in the bore

hole does rise, causing a decrease in the flow return. 
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Figure 3. 1 

Table 3.1 

true 

impervious 

Schematic representation of a packer test in a homoge
neous and isotropic formation. The borehole is sea
led. 

Results of a numerical simulation of packer tests in a 
homogeneous and isotropic formation. The borehole is 
sealed. 

c-ver flow rate flow rate Moye's true C Moye's 
into the out of the formula C CM k oressure formation formation k (input) r 

1112 Pa m3/s m3 /s m2 (CM) 
10-14 4• 10 5 1,35.10-s 1.23-10" 14 0.590 0.730 1. 23 
10-14 2 • 10 5 6.75-10" 6 1.23· 10" 14 0.598 0.730 1. 23 
10-13 4• 105 1,35.10-s 1.2J•l0·13 0.590 0.730 1. 23 
10-12 4-10 5 1. 35.10- 3 1.23-1')" 12 0.590 0.730 1.23 
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Figure 3.2 Schematic representation of a packer test in a homoge
neous and isotropic formation. The borehole is un
sealed. 

Table 3.2 

true 

k 

m2 

10-14 

10-13 

1 ri-1 2 

Results of a numerical simulation of packer tests in a 
homogeneous and isotropic formation. The borehole is 
unsealed. 

over flow rate flow r11te Moye's true C Moye's 
into the out of the formula C CM 

pressure formation formation k (input) r 
Pa m3/s m3 /s m2 (CM) 

4-11)5 1. 50• 10- 5 7.45-10- 6 1. 37.10- 14 0.53 0.730 1. 38 

4-10 5 1.50•10- 4 8.55-10- 5 1.37•10- 13 0.53 0.730 1. 38 

4-10 5 1.50•10- 3 1.20-10- 3 1.37•10- 12 0.53 0.730 1. 38 
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Inhomogeneous isotropic formation 

3.3.1 Low permeability near the borehole 

The purpose of the following simulations is to check the influence 
of a local decrease in the rock permeability near the borehole. 
This decrease is considered to be a side effect resulting from 

mechanical or biological clogging, stress redistribution as a re

sult of the drilling, etc. 

The conditions under which a "borehole skin" occurs have not yet 

been sufficiently studied. One of the purposes of the present in

vestigation is to draw attention on the effect of a "borehole 
skin" on the calculated permeability. 

When the permeability of an inhomogeneous formation is calculated 
by formulae for homogeneous formations, e.g. Moye's formula one 

obtains an equivalent permeability. In the present case the equi

valent permeability is that of a series of two permeabilties and 

as is well known, the small permeability has a strong influence on 

the equivalent permeability. In such a case it appears that Moye's 

formula underestimates the true permeability of the formation. 
This is demonstrated by the results presented in tables 3.3 and 
3.4. 

The representative permeability of the rock is considered 10- 12 m2 

in all simulations but one, in which it is assumed to be 10- 14 m2 • 

In the region nearest to the borehole different permeabilities are 
considered in the range of 10 -is m2 to 10 - 13 m2 • The outer boun

dary region of low permeability are taken, in the different simu

lations, in the range between 0.11 to 0.63 metres. The net thick

ness, obtained by substracting the radius of the well, is 0.082 to 
0.602 metres. 

Moye's formula leads to the following results: in case of high 
contrast in skin permeability and formation permeability of 10-15 

2 - 2 m and 10 12 m one obtains an equivalent permeability of the same 

order of magnitude as the lower permeability, even for the small 
thickness of 0.082. 

In cases of a skin permeability of 10- 14 m2 and rock permeability 
of 10- 12 m2 , one obtains values between 0.36x10- 13 m2 ancl 
0.21x10- 13 m2 , depending on the extent of the low permeability re

gion. 
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In the case of a low permeability region of 10 - 1 3 m2 and rock 

permeability of 10-12 m2, one obtains values between 0.31x 10- 12 m2 

and 0.20x10 - 14 m2• 

The above conclusions apply also for a sealed borehole, which 

means that the results do not depend on the length of the packers. 
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Figure 3.3 

Table 3.3 

R_ 

m 

r.11 

C. 11 

n.11 
0.18 
0.18 
0 .18 

0.33 

0.33 
0.33 

0.63 

0.63 

Schematic representation of a packer test with permea
bility of the region near the borehole lower than in 
the remaining part of the rock formation. The bore
hole is unsealed. 

Results of numerical simulations of packer tests with 
permeability in the region near the borehole lower 
than in the remaining part of the rock formation. The 
borehole is unsealed. 

over flow rate flow rnte Move's 
kl k2 pressure into the out of the formula 

formation formation k 
m2 m2 Pa m3 Is m3/s m2 

10-15 10-12 4• 105 3. 98· 10- 6 l.40•10- 7 0. 36· 10- 14 
10- 14 10-12 4·10 5 3.92•10- 5 6.50·10- 6 0.36·10- 13 
10-1 3 10-12 4·10 5 3.35-10-4 3.02-10- 4 0.31·10- 12 
10-1 5 10-12 4· 10 5 2.96·10- 6 5.60·10- 8 0.27• 10- 14 
10-14 10-12 4• 10 5 2.92-10- 5 2.60·10- 6 n.27-10- 13 
10-1 3 10-12 4• 105 2.65• 1':J- 4 2.n -10- 4 0.24•10- 12 
10-1 5 10-12 4•10 5 2 .28· 10- 6 4.40-10-s 0.21-10- 14 
10-14 10-12 4• 105 2.27-10- 5 2.60·1Cl- 6 0.21.10- 13 
10-1 3 10-12 4• 105 2.14-10- 4 1.27-10-4 0.20-10- 12 

10-15 10-12 4. 1()5 1.88·10- 6 7. 52• 10-s 0.17•10- 14 

10-15 10-14 4-10 5 1.82· 10- 5 2.69-10- 7 0.17•10- 14 
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Figure 3.4 Schematic representation of a packer test with permea
bility in the region near the borehole lower than in 
the remaining part of the rock formation. The bore
hole is sealed. 

Table 3.4 Results of numerical simulations 
permeability in the region near 
than in the remaining part of the 
borehole is sealed. 

over flow rate 
R kl kz pressure into the 

formation 

m m2 m2 Pa m3/s 

0.11 10-15 10-12 4-10 5 3.99·10- 6 

0.11 10·14 10-12 4-10 5 3.92·10· 5 

0.11 10-13 10-12 4-10 5 3.15-10"4 

of packer tests with 
the borehole lower 

rock formation. The 

flow rate Moye's 
out of the formula 
formation k 

m3/s m2 

0.36·10" 14 

0.36-10" 13 

0.31-10"' 2 
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3.3.2 Vertical inhomogeneity 

Scanning of borehole permeability logs (Carlsson et al., 1980) 

shows large inhomogeneities in the vertical direction. The calcu

lated permeability is attributed to the region between the packers 

alone. It may, however, have been influenced by a different perme

ability in the adjacent regions. 

In this section we check the influence of inhomogeneities adjacent 

to the section of injection on the calculated permeability. The 

region between the packers is assumed homogeneous (figure 3.5), 

while the adjacent regions are assumed to be of different permea

bility. The input data and the results of the simulations with a 

sealed and an usealed borehole are presented in tables 3.5 and 

3.6, respectively. 

Moye's formula, underestimates the permeability of the region bet

ween the packers, or overestimates, depending on the permeability 

of the adjacent region. However, the factor of underestimation or 

overestimation is relatively moderate even for large contrasts in 

permeability. 

Lower permeability regions adjacent to the section of injection 

lead to an underestimation of the actual permeability by a factor 

of about 0.92. 

Layers of higher permeability adjacent to the section of injection 

lead to an overestimation of the actual permeability by a factor 

of about 1.8. 

As for homogeneous formations, flow from the formation into the 

borehole has no significant effect on the injection rates and on 

the respective calculated permeabilities. 
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Figure 3.5 Schematic representation of packer tests in formations 
with a vertical inhomogeneity. The borehole is un
sealed. 

Table 3.5 Results of numerical simulations of packer tests in 
formations with a verical inhomogeneity. The borehole 
is unsealed. 

"Ver flow rate flow rate Moye's true Moye's 

kl kz pressure into the out of the formula (inout) (' CM 
formation formation k Ckl 4i 

m2 m2 Pa m3 /s m3/s m2 (Cl') 

10-14 10-15 4•10 5 1.01·10- 5 2.09·10- 6 0.919·10- 14 0.790 0. 73 0.92 

10-14 10-13 4-10 5 1. 89 · 10- 5 1.21 · 10- 5 1.720•10-14 0.420 0. 73 1. 74 

10-14 10-12 4•105 1. 98· 10- 5 l.66·10- 5 l .800· 10- 14 0.400 0.73 1. 83 
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impervious 

Figure 3.6 Schematic representation of packer tests in formations 
with a vertical inhomogeneity. The borehole is sea
led. 

Table 3.6 

kl kz 

m2 m2 

10-14 10-15 

10-14 10-16 
10-14 10-12 

10-14 10-1 3 

Results of numerical simulations of packer tests in 
formations with a vertical inhomogeneity. The bore
hole is sealed. 

over flow rate flow rate ~aye's true Moye's 
pressure into the out of the formula (input) C CM 

formation format ion k Ck1 ~ 
Pa m3 /s m3/s m2 (CM) 

4•10 5 9.81·10- 6 0.89·10- 14 0.82 0.73 0.89 

4• 105 8.26·10- 6 0. 75.10- 14 0.97 0.73 0.75 

4•10 5 1,95.10- 5 1. 78·11J-l, 0.410 I)_ 71 1. 78 

4• 105 l.86·10- 5 l./i9•10-l, 0.430 0.73 1. 70 
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Anisotropic formations 

The effect of anisotropy is checked for a formation with princip2l 

directions of anisotropy along the horizontal and the vertical 

axes. Anisotropy ratios of 1/10 and 1/100, of the horizontal com

ponent to the vertical or vice versa, are considered. 

The settings for an unsealed and sealed borehole are schematically 

displayed in figures 3,7 and 3,8, respectively. The resu]ts of 

the calculations, presented in tables 3,7 and 3,8 respectively, 

can be summarized as follows: 

For a sealed borehole Moye's formula gives more or less the value 

of the horizontal permeability. In cases of higher permeability in 

the vertical direction, with kv/kh between 10 and 100, the hori

zontal permeability is overestimated by a factor of 2.08 to 4,53, 

For lower permeabilities in the vertical direction, with 1\,/kh in 

the range of 1/10 to 1/100, Moye's formula gives approximately the 

horizontal permeability. 

For an unsealed borehole in a formation with a lower permeability 

in the vertical direction than in the horizontal, the behaviour is 

similar to that of a sealed borehole, i.e. Moye's formula gives 

approximately the value of the horizontal permeability. 

For higher permeability in the vertical direction than in the ho

rizontal, with a ratio kv/kh = 10 the horizontal permeability ov

erestimated by a factor of 1.85, while for a ratio kv /kh = 100 

the geometrical mean is amplified by a factor of about 3,02. 

Comparing the above to the performance of Moye's formula in iso

tropic formations, one may conclude that only in cases of very 

high ratios of vertical to horizontal permeabilities is there a 

mild influence on the results, while in general one obtains more 

or less the value of the horizontal permeability. 
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Figure 3. 7 

Table 3.7 

Schematic representation of a packer test in an aniso
tropic formations. The borehole is unsealed. 

Results of numerical simulations of packer tests in an 
anisotropic formations. The borehole is unsealed. 

over flow rate flow rate Moye's 
kh k pressure into the out of the formula 

V formation formation k 

m2 m2 Pa m3/s m3/s m2 

10-14 10-13 4•10 5 2.29-10-5 1.53.10- 5 2.08·10- 14 

10-14 10-12 4°10 5 4.98°10- 5 4.21-11)- 5 4.53°10- 14 

10-13 10-14 4-105 1.21.10-4 4.89-10- 5 1.11 10-13 

10-12 10-14 4• 1f)5 8.96-11)- 4 6.21.10- 4 0.82 10- 12 
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Figure 3.8 

Table 3.8 

impervious 

Schematic representation of a packer test in aniso
tropic formation. The borehole is sealed. 

Results of numerical simulations of packer tests in 
anisotropic formation. The borehole is sealed. 

over flow rate flow rate '.·1oye' s 
kh I<,_, pressure into the out of the formula 

formation formatior, k 

m2 m2 Pa m3/s m3/s m2 

10-14 10-1 3 4•10 5 2.03·10- 5 1.85-10- 14 

10-14 10-12 4• 10 5 3.32-10- 5 3.02· 10-14 

10-13 10-14 4•10 5 1.09-10-4 0.99·10- 13 

10-12 10-14 4-10 5 8.76-10- 4 0.80-10- 12 
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Discrete media 

This section deals with the simulation of packer tests in discrete 

media. We consider an interconnected fracture network, which can 

be treated, in principle, by the continuum approach, and an iso

lated fracture. The isolated fracture can be regarded also as be

longing to a system of unconnected fractures having the same pro

perties. 

3.5.1 Fracture network 

The various settings used in the calculations are displayed sche

matically in figures 3.9 to 3.11. The investigated medium is as

sumed to be an ordered system of fractures and impervious blocks. 

The blocks have the form of hollow cylinders with a height of 2 

metres and a difference between the inner and outer radia of 2 me-

tres. The fracture width is 0.0002 metres. The section between 

the packers is assumed to be intercepted by one fracture only. 

The permeability of the continumrn equivalent, presented in tables 

3.9 to 3.12, is taken as an average over the investigated length 

of 2 m. between the packers. 

First we consider a fracture network with isotropic permeability. 

Packer tests have been simulated in formations with an unsealed as 

well as with a sealed borehole. The results of the calculations 

are presented in tables 3.9 and 3.10. 

In a second series of simulations, we consider an anisotropic net

work with vertical fracture permeability 10 times higher than the 

horizontal. The borehole is assumed to be unsealed. The input 

data and results of the calculations are presented in figure 3.11. 

The permeabilities calculated by Moye's formula gives slightly 

higher overestimated values than the homogeneous equivalent. As in 

the homogeneous case, higher vertical permeability values (ratios 

of vertical to horizontal by 10 to 1) are not reflected in the 

permeabilities calculated by Moye's formula. 
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3.5.1 A single fracture 

We consider a single homogeneous fracture, as well as an inhomoge

neous one, with low permeability near the borehole. The fracture 

width is taken as 0.0002 metres. The representative intrinsic 

permeability of the homogeneous fracture is 10-10 m2 (as the frac

ture may be partially filled, its permeability is not necessarily 

correlated to the fracture width). The permeabilities of the con

tinuum equivalent (an average over the length of 2 m.) is 10- 14 

2 
m • 

The flow through a fracture is two-dimensional and thus differs 

significantly from the axisymmetrical flow on which Moye's formula 

is based. Calculations using Moye's formula, therefore seem to be 

of questionable value. On the other hand, the structure of the 

formation we deal with (single fracture or interconected network) 

is unknown. Therefore, in practice we will always use formulae for 

axisymmetric flow. It is interesting to find out what is the er

ror in the calculation of permeability caused by using the inap

propriate Moye's formula. 

The rate of flow through a horizontal homogeneous fracture can be 

calculated using Van Everdingen and Hurst (1949) solution (see Ap

pendix). The results of the calculations for a test of ten mi

nutes duration, presented in table 3.12, show that Moye's formula 

underestimates the true permeability of the formation by a factor 

of only about 0.4. This conclusion should be restricted to the re

sults obtained with the considered data set. 

A second series of simulations is conducted with a low permability 

region near the borehole. From the results presented in table 3.13 

and obtained with the numerical model, one may draw similar con

clusions as for a continuum (section 3.3.1), i.e. Moyes' formula 

gives permeabilities closer to the skin region, of low permeabili

ty. 
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Figure 3,9 

Table 3,9 

true 

k 

rn2 

10-14 

pervious fracture 

block 

Schematic representation of packer tests in a discrete 
medium. The borehole is unsealed. 

Results of numerical simulations of packer tests in a 
discrete medium. The borehole is unsealed. 

over flow rate f10 1•: r3te Moye's true Moye's 
pressure into the out of the formula (inr,ut) C CM 

formation formation k C r 
Pa m3/s m3/s m2 (CM) 

4-10 5 1.947•10- 5 9.739-1()- 6 1. 78• lQ-14 0.41 0.730 1. 78 
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perv1ous fracture 

block 

□□ 
□□ 

=□□ _IT][] 
i111pervious 

Figure 3.10 Schematic representation of packer 
medium. The borehole is sealed. 

test in a discrete 

Table 3.10 Results of numerical simulations of packer tests in a 
discrete medium. The borehole is sealed. 

true over flow rate flow rate Moye's true Moye's 
pressure into the out of the formula (input) C CM 

k formation formation k C -c-

m2 Pa m3/s m3/s m2 (CM) 

10-14 4• 105 1. 886· 10-5 1.08, 10- 14 0.42 0.730 1. 74 
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Figure 3.11 Schematic representation of packer 
medium. The borehole is unsealed. 
the vertical fractures is 10 times 
the horizontal ones. 

pervious fracture 

1mperv1ous block 

test in a discrete 
The permeability of 
higher than that of 

Table 3.11 Results of numerical simulations of packer tests in a 
discrete medium. The borehole is unsealed. The perme
ability in the vertical fractures is 10 times higher 
than that of the horizontal ones. 

over flow rate flow rate Moye's 

kh k pressure into the out of the formula 
V formation formation k 

m2 m2 Pa m3/s m3 /s m2 

10-14 10-13 4•10 5 2.33-10- 5 1.62-1')- 5 2.12-10- 14 
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Figure 3.12 Schematic representation of a packer test in a dis
crete medium with horizontal fractures only. 

Table 3.12 Results of numerical simulations of packer tests in a 
a discrete medium with horizontal fractures only. 

true over flow rate flow rate Moye's observations 
pressure into the out of the formu 1 a 

k for'llation formation k 

m2 Pa m3/s rn 3/s m2 
rate of f1 ow 

lQ-14 11. 10s 4.55•10- 6 0. 414 • 10- l 4 after 10 min. 
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Figure 3.13 Schematic representation of a packer test in a dis

crete medium with horizontal fractures only. The 
permeability close to the borehole is lower than else
where. 

Table 3.13 Results of numerical simulations of packer tests in a 
discrete medium with horizontal fractures only. The 
permeability close to the borehole is lower than else
where. 

over flow rate flow rate r1oye' s 
R kl k2 pressure into the out of the formula 

formation formation k 

m m2 m2 Pa m3/s m3/s m2 

0.11 10- 15 10-12 4• 105 4. 65• 10- 6 0. 423· l0- 14 

0.11 10-14 10-12 4• 10 5 4 31-10- 5 0.392-10- 13 

0.11 10-13 10-12 4• 105 2.47-10- 4 0.225-10- 12 

0.18 10-15 10-12 4• 105 3.66· 10- 6 0.333·10- 14 

0.18 10-14 10-12 4• 10 5 3.45-10-s 0.314-11)-13 
0 .18 10- 1 3 10-12 4• 105 2.19·10- 4 0.199·10- 12 

0.33 10-15 10-12 4•105 2.22.10- 6 0.202-10- 14 

0.33 10-14 10-12 4• 10 5 2.15• 1()- 5 0.196•1(]- 13 

0.33 10-13 10-12 4•10 5 1.62-10- 4 0.147-10- 12 
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A. 1 

APPENDIX 

Analysis of the transient flow period 

During a packer test in a large aquifer, the flow is unsteadv. 

However, after some period of time, a quasi-steady flow regime is 

reached and steady state formulae can be used for the calcuJation 

of the rock permeability. The elapse of time after which quasi-

steady flow is reached depends on the flow pattern, spherical, ra

dial, etc., on the radius of the cavity from which the fluid is 

injected, and on the properties of the fluid and of the formation 

such as permeability, porosity, fluid and formation compressibili

ties and the fluid viscosity. 

a. Spherical flow 

Spherjcal flow in a homogeneous and isotropic formation is des

cribed by the following equation 

(A. 1 ) 

Equation (A. 1 ) can be written in dimensionless form by defining 

the following dimensionless parameters 

r tk 
<Pd 

<PC<P(rd ,td) 
(A.2) rd = - td = 

' 
= 

<Pi -qi ( 1 't d) r <j)cµr 
w w 

where <P. denotes the initial potential. Substitution of equation 
1 

(A.2) into (A.1) yields 

(A.3) 

Chatas (1966) presented a solution of equation (A.3) for an infin-

ite aquifer, with initial constant potential (cl'.), 
1 

potential maintained at 

rate of injection is 

q = 

the cavity boundary (r ). 
w 

and constant 

The resuJting 

(A. 4) 



A.2 

where qdis the dimensionless rate of flow defined by 

(A.5) 

b. Radial flow 

Radial flow in a homogeneous and isotropic formation is described 

by the equation 

(A.6) 

By defining the same dimensionless parameters as for the spherical 

cases equation (A.2), one may write equation (A.6) in the dimen

sionless form 

(A.7) 

and the dimensionless discharge becomes 

qd = q 2nhk6P 
µ (A.8) 

where h represents the thickness of the aquifer. 

Van Everdingen and Hurst (1949) present a solution of equation 

(A.7) for an infinite aquifer, with constant initial potential 

{~.),and constant potential and the borehole boundary (rw). They 
1. 

calculated the cumulative volume of fluid injected into the forma-

tion, and found 

V 
(A.9) 

where vd is the dimensionless cumulative volume defined by 

(A.10) 

where J and Y are Bessel functions of the first and of the sec-
o 0 

end kind, respectively, and of order zero. The integral in equa-

tion (A.10) can be evaluated only numerically. 

The rate of flow can be calculated using equation (A.9) and the 



A.3 

definition 

Q = /:,V (A.11) 
l:,t 

The dimensionless rates of flow for spherical and radial flow are 

represented graphically in Figure A.1. It shows that a quasi-

steady state is reached faster for spherical flow than for radial 

flow. 

The formations tested by SGU are characterized by a permeability 

The radius of the borehole 

is usually 0.028 m. If we consider porosity to be 0.003, fluid 

viscosity 0.001 Pas, and a total compressibiJity of 10- 10 Pa- 1 , 

then we obtain from equation (A.2) 

td = 42517.0 t (A.12) 

For a test of one minute duration only, the corresponding dimen

sionless time is 2.55x106 and for ten minutes 2.55x107 • As one 

may see from Figure A.1, even after one minute the flow is quasi-

stationary. 
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Figure A.1 Dimensionless rates of flow for spherical and radial 
flow. 
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