

Input description for BIOPATH

Jan-Erik Marklund Ulla Bergström Ove Edlund

Studsvik Energiteknik AB, 1980-01-21

INPUT DESCRIPTION FOR BIOPATH
Jan-Erik Marklund
Ulla Bergström
Ove Edlund
Studsvik Energiteknik AB, 1980-01-21

This report concerns a study which was conducted for the KBS project. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client.

```
A list of other reports published in this
series is attached at the end of this report.
Information on KBS technical reports from
1977-1978 (TR 121) and 1979 (TR 79-28) is
available through SKBF/KBS.
```


Abstract

The computer program BIOPATH describes the flow of radioactivity within a given ecosystem after a postulated release of radioactive material and the resulting dose for specified population groups.

The present report accounts for the input data necessary to run BIOPATH.

The report also contains descriptions of possible control cards and an input example as well as a short summary of the basic theory.

Performed within a joint research program in cooperation with SKBF/KBS.
Table of contents
Page

1. SUMMARY 2
2. GENERAL 3
2.1 Basic equations 3
2.2 Program versions 4
3. CONTROL CARDS 5
4. INPUT DATA 6
4.1 Main input data 6
4.2 Source data from file 4 25
4.3 Additional input data for BIOPATH-2 27
5. INPUT EXAMPLE 46
6. REFERENCES 47
7. EXHIBITS 49

1. SUMMARY

Two versions of BIOPATH, BIOPATH-1 and BIOPATH-2 have been defined. The main difference is that BIOPATH-2 can handle transfer matrices that vary with time. A short summary of the basic theory for BIOPATH is given in chapter 2.

The control cards needed to run the versions are discussed in chapter 3.

In chapter 4 the input data for both versions are presented. BIOPATH-2 needs some additional input data compared to BIOPATH-1, in order to specify the integration method to be used and the time dependence of the transfer coefficients.

An example of a possible set of input data is presented in chapter 5.
2. GENERAL

The program BIOPATH computes the activity and dose in a set of compartments after a release of a radioactive nuclide in one or more of the compartments. The word "compartments" denotes some part of the geosphere, e.g. the groundwater, a well, the atmosphere or the oceans.

2.1 Basic equations

The release and flow of the nuclide between the different compartments is described by the differential equation
(1) $\quad y^{\prime}=A Y+g$
where $y_{i}(t)$ is the amount of the nuclide, and the source term $g_{i}(t)$ is the release rate of the nuclide in compartment "i" at time t. The matrix elements $a_{i j}$ (j¥i) are called transfer coefficients and give the increase rate of the nuclide in compartment "i" due to the presence of a unit amount of the nuclide in compartment "j".

Conservation of matter gives that

$$
\begin{equation*}
\Sigma y_{i}^{\prime}=-\lambda \Sigma y_{i}+\Sigma g_{i} \tag{2}
\end{equation*}
$$

where λ is the decay constant of the nuclide. This also follows from the condition
(3) $\quad \sum_{i} a_{i j}=-\lambda \quad$ or
(4)

$$
a_{j j}=-\lambda-\sum_{i \neq j} a_{i j}
$$

(Note that the matrix A is read transposed by the input routines, so that the summation should be done horisontally and not vertically for the input data).

When the amounts of the nuclide are known, the activity and dose are computed through multiplication by appropriate factors.

The amount, activity and dose of the daughter nuclides is obtained in the same way, using the amount of mother nuclide times a decay factor as source term and using appropriate transfer coefficients and decay constant. More details are given in /1/.

2.2 Program versions

Two versions exist, here named BIOPATH-1 and BIOPATH-2.

BIOPATH-1 uses the EISPACK subroutine package /2/ for solving the differential equation (1). It can only handle constant transfer coefficients. The version BIOPATH-2 may handle also transfer coefficients that vary with time. It uses the IMPEX and EULER integration routines $/ 3,4,5,6,7 /$.

The IMPEX package has proved one of the best for solving stiff differential equations /8/.
(Whether a differential equation should be considered stiff or not depends on the ratio between the largest and smallest eigenvalue to the matrix A in (1), in other words involving processes with time-scales which differ by many orders of magnitude. This is often the case for BIOPATH problems).

3. CONTROL CARDS

The control cards to be used depend to a great extent on the user and on the computer beeing used. In exhibit 1 is shown one example for the CYBER 172 installation at STUDSVIK. The example shows one submit file sUBIO, that uses the control card file BIOPATH in order to compute the results and another submit file SUPLOT, which plots the information saved on TAPE20. Both SUBIO and SUPLOT presently reside on the archive-file OABIO4 which may be attached by the control card:

CALL, BIOPATH,L=JEM (VERS =OABIO4)

The control card file BIOPATH, which is shown on exhibit 2 resides on the procedure library under user=JEM. The file BIOPATH presupposes that common input data, source data for BIOPATH-1 and additional data for BIOPATH-2 are stored on indirect access permanent files named DATA, SOURCE and DIMP respectively.

The control card file KONTO, which is used both by SUBIO and SUPLOT contains normal accounting and controlling cards:
/NøSEQ
JOB,T100.NAME ADDRESS
USER, uuu, PW.
CHARGE, xxxxx,yyy.
(Here uuu,PW, xxxxx and yyy depend on user specification).
4. INPUT DATA

The input routines have been compiled from different sources, therefore the principles used are not the same for all data. The input data may be subdivided into three different groups

- Main input data
- Source data from file 4 (only BIOPATH-1)
- Additional data for BIOPATH-2

Below follows a detailed description of the data belonging to each of these groups.

4.1 Main input data

The main input data is read either from file 1 or from file input, which normally are equivalent. The format is normally free. Exceptions are cards of type $1.1,1.2,1.3$ and 1.21.

Note that contrary to standard assignments all variables beginning with "M", are real except the variables MATID and MODE. Also the variables $\operatorname{KD}(17,17)$, and KONC are real. The variables ACTONLY, ARITM and TOTMOD are integers.

```
The input data is read by the following 31 READ statements
```

```
Type_1.1
Format: 8A10
READ (1,123) TEXT
```

TEXT : Some special heading for identification of
the calculation
Ex: U234/RA226 ALT1 KBS1A07 15/2 1979

Type 1. 2
Format: A6,5I2, 1PE10.7,1PE10.2
READ (1,304) TIDUNIT,LOKAL,NHAV,KBS,ACTONLY,NPLOT, CONVFAC,TRANFAC

TIDUNIT : The time unit in which you want to express doserates
Ex: ' MONTH',' YEAR',' DAY',' HOUR',' ' (Blank means year)

LOKAL : The type of alternative you want to choose in the calculation
Ex: 1 = Alternative 1
2 = Alternative 2
3 = Alternative 3

NHAV : This number determines if you want to calculate the consequences of an accident with a short release time or not

Ex: 1 = Accident with short release time
$0=$ Accident without a short release time

KBS : This number controls the collective dose calculation
Ex: 2 (Normal)

```
ACTONLY : If you only want to calculate the activity
    in the different compartments at different
    times you are able to control that with
    this number
        Ex: 1 = Only the activity is calculated
            2 = Also the dose is calculated
NPLOT : With this number you are able to save and
        plot the results
        Ex: 0 = Saved and plotted
            1 = Only saved
            2 = Neither saved nor plotted
```

CONVFAC : A conversion constant
Ex: 1.0E09

TRANFAC : Another constant which expresses the fraction of the decay of a parent, that generates the daughter studied in the calculation. Ex: $0.57(S R 91 \rightarrow y 91 m)$

Type 1. 3
Format: A10
$\operatorname{READ}(1,1010)$ KAELLA

KAELLA : Identification. Presently not used by the program.

```
Type_1.4
                                    Format: Free
READ (1,*) MA,(MV (J),J=1, 3),(MM (J),J=1,3),(MK (J),J=1, 3),
1
    (MC (J),J=1,3,(MR (J),J=1,3),(MG (J),J=1,3),
    (MF (J) ,J=1,4),(BV (J),J=1,3)
MA : The inhalation rate of a normal human being
    Unit: (M**3/YEAR)
    Ex: 9438. (25.8M**3/DAY)
```

(MV(J), $J=1,3)$: The individual annual consumption of drinking water.
Unit: (Litres/year)
Ex: 438., 0., 438. (1.2L/DAY, 0.L/DAY, 1.2L/DAY)
(MM(J), $J=1,3$): The individual annual consumption of milk.
Unit: (Litres/year)
Ex: 183.,0.,131. (0.5L/DAY, 0.L/DAY, $0.36 \mathrm{~L} / \mathrm{DAY}$)
(MK (J), $J=1,3$): The individual annual consumption of meat.
Unit: ($\mathrm{Kg} /$ year)
Ex: 52.5, 0., 45.6 (1 kg/week, 0. kg/week, $0.8 \mathrm{~kg} /$ week)
(MC(J), $J=1,3$): The individual annual consumption of cereals.
Unit: (Kg/year)
Ex: $61.1,0.118 .10 .17 \mathrm{~kg} /$ day, $0 . \mathrm{kg} /$ day, $0.32 \mathrm{~kg} / \mathrm{day})$
(MR(J), $J=1,3)$: The individual annual consumption of rootfruits.
Unit: (Kg/year)
Ex: 83.2,0., 82. (1. $6 \mathrm{~kg} /$ week, $0 . \mathrm{kg} /$ week, $1.57 \mathrm{~kg} /$ week)
(MG(J), J=1,3): The individual consumption of vegetables.
Unit: ($\mathrm{Kg} /$ year)
Ex: 121.,0.,118. (10kg/month, 0.kg/month, $9.8 \mathrm{~kg} /$ month $)$
(MF(J), $J=1,4$): The individual annual consumption of fish
Unit: ($\mathrm{Kg} / \mathrm{ye}$ ar)
Ex: 50.,20., 22., 50.
($B V(J), J=1,3):$ The daily average irrigation rate.
Unit: (L/(M**2*DAY))
Ex: 0.4,0.,0.

```
The three numbers in the arrays above corresponds to the regional, intermediate and global ecosystems respectively.
```

```
Type_1.5 Format: Free
READ(1,*) MVK,MKB,TAETB,TAETG,ME,DEP,TIM1,TIM2,TIM3,
1
    TIM4,MEB,MEV
MVK : The daily average consumption of water for a cow.
                            Unit: (L/DAY)
                            Ex: 30.0
MKB : The daily average consumption of foodstuff
    for a cow.
    Unit: (Kg/DAY)
    Ex: 30.0
TAETB : The average value of foodstuff produced per
    squaremeter.
    Unit: (Kg/M**2)
    Ex: 0.03
TAETG : The average value of vegetables produced
    per squaremeter
    Unit: (Kg/M**2)
    Ex: 1.5
ME : The annual consumption of eggs
    Unit: (Number/year)
    Ex: 220.
DEP : Deposition velocity
    Unit: (M/DAY)
    Ex: 259.
```

```
TIM1 : The annual number of hours used for bathing
    Unit: (hours/year)
    Ex: 30.
TIM2 : The annual number of hours used for sunbath
        on the beach
        Unit: (hours/year)
        Ex: 90.
    TIM3 : The annual number of hours used for work
        with fishing tackle
        Unit: (hours/year)
        Ex: 90.
TIM4 : The annual number of hours during which you
        are exposed to radiation from contaminated
        ground
        Unit: (hours/year)
        Ex: 8760.
    MEB : The daily consumption of cereals for a hen
        Unit: (kg/day)
        Ex: 0.07
MEV : The daily consumption of water for a hen
        Unit: (L/day)
        Ex: 0.18
```

```
Type_1.6 Format: Free
READ \((1, *)\) REAM,REMM, BADM,STRM,FISKM,MARKM
REAM : The internal weighted total body dose
    conversion factor for inhalation for the
    parent nuclide
    Unit: (rem/ci)
    Ex: 2.71E06 (U234)
REMM : The internal weighted total body dose con-
        version factor for ingestion for the parent
        nuclide
        Unit: (rem/ci)
        Ex: 1.14E05 (U234)
BADM : The external dose conversion factor for
        bathing for the parent nuclide
        Unit: (rem/hour)
        Ex: 1.4
STRM : The external dose conversion factor for the
        parent-nuclide due to visit on a contaminated
        beach
        Unit: (rem/hour)
        Ex: 0.6
    FISKM : The external dose conversion factor for the
        parent-nuclide due to work with contaminated
        fishing tackle
        Unit: (rem/hour)
        Ex: 0.003
            MARKM : The external dose conversion factor for the
        parent-nuclide due to visit on the conta-
        minated ground
        Unit: (rem/hour)
        Ex: 0.006
```

```
Type_1.7 Format: Free
READ(1,*) FVM,FCM,FGM,FRM,FEM,FMM,FKM,FEM
FVM : The concentration factor (soil-foodstuff)
    for the parent nuclide
    Unit: (Dimensionless)
    Ex: 2.5E-03 (U234)
FCM : The concentration factor (soil-cereals) for
        the parent nuclide
        Unit: (Dimensionless)
        Ex: 2.5E-03 (U234)
FGM : The concentration factor (soil-vegetables)
        for the parent nuclide
        Unit: (Dimensionless)
        Ex: 2.5E-03 (U234)
FRM : The concentration factor (soil-rootfruits)
        for the parent nuclide
        Unit: (Dimensionless)
        Ex: 2.5E-03 (U234)
FFM : The concentration factor (water-fish) for
        the parent nuclide
        Unit: (Dimensionless)
        Ex: 10., 10., 10.
FMM : The ratio between the activity concentration
    for the parent nuclide in 1 liter milk and
    the daily ingested amount of the activity
    by a cow
    Unit: (Day/l)
    Ex: 5.0E-04 (U234)
```

```
FKM : The ratio between the activity concentration
    for the parent nuclide in 1 kg meat and the
    daily ingested amount of activity by a cow
    Unit: (day/kg)
    Ex: 5.0E-03 (U234)
FEM : The ratio between the activity concentration
    for the parent nuclide in one egg and the
    daily ingested amount of activity by a hen
    Unit: (day/egg)
    Ex: 1.0E-04 (U234)
```

Type_1. 8
Format: Free
READ (1,*) READ,REMD, BADD,STRD,FISKD,MARKD
READ : The internal weighted total body dose
conversion factor for inhalation for the
daughter nuclide
Unit: (rem/ci)
Ex: 2.71E06 (RA226)
REMD : The internal weighted total body dose
conversion factor for ingestion for the
daughter nuclide
Unit: (rem/ci)
Ex: 1.14E05 (RA226)
BADD : The external dose conversion factor for
bathing for the daughter nuclide
Unit: (rem/hour)
Ex: 1.4
STRD : The external dose conversion factor for
the daughter nuclide due to visit on a
contaminated beach
Unit: (rem/hour)
Ex: 0.6

```
FISKD : The external dose conversion factor for
    the daughter nuclide due to work with
    contaminated fishing tackle
    Unit: (rem/hour)
    Ex: 0.003
MARKD : The external dose conversion factor for
    the daughter nuclide due to visit on the
    contaminated ground
    Unit: (rem/hour)
    Ex: 0.006
```

```
Type_1.9 Format: Free
```

Type_1.9 Format: Free
READ(1,*) FVD,FCD,FGD,FRD,FFD,FMD,FKD,FED
READ(1,*) FVD,FCD,FGD,FRD,FFD,FMD,FKD,FED
FVD : The concentration factor (soil-foodstuff)
FVD : The concentration factor (soil-foodstuff)
for the daughter nuclide
for the daughter nuclide
Unit: (Dimensionless)
Unit: (Dimensionless)
Ex: 3.1E-04 (RA226)
Ex: 3.1E-04 (RA226)
FCD : The concentration factor (soil-cereals) for
the daughter nuclide
Unit: (Dimensionless)
Ex: 3.1E-04 (RA226)
FGD : The concentration factor (soil-vegetables)
for the daughter nuclide
Unit: (Dimensionless)
Ex: 3.1E-04 (RA226)
FRD : The concentration factor (soil-rootfruits)
for the daughter nuclide
Unit: (Dimensionless)
Ex: 3.1E-04 (RA226)

```
```

FFD : The concentration factor (water-fish)
for the daughter nuclide
Unit: (Dimensionless)
Ex: 15., 50., 50.
FMD : The ratio between the activity concentra-
tion for the daughter nuclide in 1 liter
milk and the daily ingested amount of the
activity by a cow
Unit: (day/l)
Ex: 8.0E-03 (RA226)
FKD : The ratio between the activity concentra-
tion for the daughter nuclide in 1 kg
meat and the daily ingested amount of
activity by a cow
Unit: (day/kg)
Ex: 9.0E-04 (RA226)
FED : The ratio between the activity concentra-
tion for the daughter nuclide in one egg
and the daily ingested amount of activity
by a hen
Unit: (day/number of egg)
Ex: 1.0E-06 (RA226)

```
```

Type_1.10 Format: Free
READ(1;*) REGF,FISKF;BADF,REDF,FINT
REGF : The number of inhabitants, who are living
in the regional area
Ex: 18000
FISKF : The number of inhabitants, who are bathing
in the regional area
Ex: 1.0E07
BADF : The number of fishermen, who are working
with fishing tackles in the region
Ex: 1000
REDF :
FINT : Critical group regarding fish consumption
in the intermediate and regional ecosystem
Ex: 1200
Type_1.11 Format: Free
$\operatorname{READ}(1, *) \mathrm{W}, \mathrm{MF}, \mathrm{A},(\operatorname{KONC}(\mathrm{I}), I=1,3)$
W : The capacity of the well (superficial ground water
Unit: (1/year)
Ex: 60000
MF : The mass of the soil in the local area Unit: (kg)
Ex: 2.0E07

```

A : The size of the local area Unit: (M**2)

Ex: 25000
(KONC (I) ,
\(I=1,3)\) : Factors with which you are able to choose how the activity are divided between the different compartments Unit: (Dimensionless) Ex: 1.01 .01 .0

Type_1-12
Format: Free
\(\operatorname{READ}(1, *)(I A(I), I=1,7)\)
(IA(I), \(I=1,7\) ): These numbers are the indices of the compartments included in the regional ecosystem. The value of the numbers depends on the choice of the dose equations and are specific for every separate ecosystem
Ex: 5,2,4,6,6,7,4

Type_1.13
Format: Free
\(\operatorname{READ}(1, *)(I B(I), I=1,7)\)
(IB(I), \(I=1,7\) ): Similar numbers as for type 1.12, but for the intermediate ecosystem
Ex: \(5,2,4,6,8,9,4\)

Type_1.14
Format: Free
\(\operatorname{READ}(1, *) \quad(I C(I), I=1,7)\)
(IC(I), I=1,7): Similar numbers as for type 1.12, but for the global ecosystem
Ex: \(10,16,15,16,11,17,15\)
```

Type_1.15 Format: Free
READ(1,*) (ID (I),I=1,7)
(ID(I),I=1,7): Similar numbers as for type 1.12, but
for the local ecosystem
Ex: 1,7,0,0,0,0,0

```
Type 1.16 Format: Free
\(\operatorname{READ}(1, *)(M(I), I=1,17)\)
(M(I), \(I=1,17\) ): The masses of the compartments
    Unit: (kg)
    Ex: 2.5E8,8.6E11,1.0E7,2.5E12,4.8E14,
    1.25E10,5.0E8,2.2E16,3.7E13,4.4E18,
    2.0E19,1.4E21,3.6E16,1.8E15,4.4E17,
    6.0E19,2.0E15
Type 1.17 Format: Free
READ (1,*) STRTT,FIN
STRTT : The earth population at the time of the
        start of the release.
        Ex: 6.0E09
FIN : The assumed upper limit of the earth popula-
    tion
        Ex: 1.0E10
```

Type_1.18 Format: Free
READ(1,*) ARITH,TOTMOD,TMAX
Note: These values are not used when IMPEX or EULER
is used.
The effect of leaking radioactivity in the
ecological systems wants generally to be pre-
dicted at different times for a long time in
the future. The different times can be given
in two ways:
1. In arithmetic series
2. In geometric series
ARITH : This number means how many arithmetic series
you want to use.
Ex: 2
TOTMOD : This number means the total number of series
(arithmetic+geometric) you want to use
Ex: 3
TMAX : This number means the time at which you want
to stop the calculation.
Ex: 9.37E06
Type_1.19 Format: Free
READ(1,*) (STRT (I) ,STEG(I) ,I=1,ARITH)
Note: These values are not used when IMPEX or EULER
is used
(STRT(I),
STEG(I),
I=1,ARITH): These numbers means the start times and
time steps for the aritmetic series
Ex: 0.,8.98E06,8.98E06,2.0E03

```
```

Type 1.19.2 Format: Free
This card is read only if ARITH=TOTMOD in the card
type 1.18 (see before).
READ (1,*)(NSTEP(I),STRT(I),FINISH(I),I=NNN,TOTMOD)
NSTEP(I) means the number of the time steps
between the start time STRT(I) and final time
FINISH(I) in the geometric serie I.

```

Type_1.20 Format: Free
READ (1,*) NDEL,JJU,KTID

NDEL, : These three numbers have to do with the JJU, KTID outputlist in the calculation Ex: 2,10,2

Type_1.21 Format: 8A10
\(\operatorname{READ}(1,123)(\operatorname{COMID}(I), I=1, N)\)

COMID : This vector means only the names of the different compartments
Ex: Grundvatt1Grundvatt2Grundvatt3Jord
Atmsreg Ytvatten Sediment östersjön
ösjösed Atmosfär Wellmixed Deep sea
sediment2 Biota Jord Grungvglob sediment 1

Type_1. \(2 \underline{2}\)
Format: 8A10
\(\operatorname{READ}(1,123)(T I T(i), i=1,8)\)
TIT : Identification, used only when printing input data.

Ex: TH2 \(30+\mathrm{U} 234\), KBS.

Type_1.23 Format: 8A10
\(\operatorname{READ}(1,123)\) MATID
MATID : Identification, used only when printing input data.

Ex: UDATA

Type_1.24 Format: Free
READ (1,*) NEKV,ALMOD,EPS
NEKV : Number of equations (= compartments) Ex: 17

ALMOD : \(\lambda\), i.e. \(\ln 2 / T^{1 / 2}\), where \(T^{1 / 2}=\) half-life, for the parent nuclide.

Ex: 2.13276E-5 (U235)

EPS : Constant, used in SOURCM and SOURCD (only EISPACK), in order to check if the quotient between two numbers in close to 1 . It is used to determine the accuracy in the calculation. Ex: 1.E-6
```

Type_1.25
Format: 2<1
READ (1,100) DOT,SOURC
DOT : Daughter nuclide specification
T= .TRUE. means: Make computation for
the daughter.
F= .FALSE. means: Do not make this computa-
tion.
SOURC : Source data specification
T= .TRUE. means: The source of the activity
specified
F= .FALSE. means: This source is not specified.
Type_1.26 Format: Free
READ(1,*) DCM
DCM : \lambda for the parent nuclide (}\mp@subsup{\lambda}{m}{}\mathrm{)
Ex: See ref /9/
Type_1.27 Format: Free
READ(1,*) ((AM(i,j),i=1,NEKV),j=1,NEKV)
AM(i,j),i\not=j : Increase per unit of time of the
parent nuclide in compartment "i", due to
presence of one unit in compartment "j".
AM(j,j) : - - m - \sum i\not=j AM(i,j), decrease of the parent
nuclide in compartment "j" due to decay and
due to transport to other compartments.
Ex: See ref /9/

```

Type_1.28_1.29
These data are read only if DOT=.TRUE. and are similar to type 1.26 and 1.27 , except that they refer to the daughter nuclide instead of the parent nuclide.

\section*{4. 2 Source data from file 4 (BIOPATH-1)}

When the EISPAC - version of BIOPATH is used, the source data for the mother are read from file 4 two times, first in SOURCM and then in CITO. In SOURCM the data are used to compute the source term of the differential equation, in CITO to compute the release of activity for printing purposes and for storage in the vector \(\operatorname{TOT}(i), i=1,2, \ldots, N S P-1\).

The input is read through the following four READ statements. The format is free. Cards of type 2.2 to 2.4 are read only if \(N C G>0\).

Type_2. 1
\(\operatorname{READ}(4, *) \operatorname{NCG}\)
NCG : Number of releases
EX: 1

Type_2. 2
\(\operatorname{READ}(4, *)(\operatorname{IFF}(i), i=1, \operatorname{NCG})\)
IFF(i) : The identification number(s) of the release compartment(s).

Ex: 1

Type 2. 3
\(\operatorname{READ}(4, *) N G(i)\)
NG(i) : Number of time table entries for release i
Ex: 4

Type_2. 4
\(\operatorname{READ}(4, *)(T G(i, j), G(i, j), j=1, N G)\)
TG(i,j) : Time

G(i,j) : Corresponding release
Ex: See ref /9/

The values form a time-table in which linear interpolation is made.

Note that the first time in the time entries, when the release is different from zero must correspond with a time in the time entries, when the activity concentration is calculated given in card type 1.19 .1 and 1.19.2.

\subsection*{4.3 Additional input data for BIOPATH-2}

Input data are read from file 7. An example is shown in exhibit 3. The input format is either free or based on module 4, i.e. I4 and E8.0, except for the A-formats and for the data under directive PARAMETERS (80I1).

Input is controlled by directives. Only the first three characters of each directive are significant. The rest of the card may be used for comments on input data. The directives presently available are:
1. RESTART (Presently not used)
2. TITLE (Only output)
3. LIMITS
4. INTEGRATION
5. IMPLICIT PARAMETERS
6. LONG (Presently not used)
7. SOURCES
8. MATRICES
9. VARIATIONS
10. AIJ
11. INPUT FILE FOR SOURCE DATA
12. REWIND FILE 7
13. NO REWIND OF FILE 7
14. PRESENT DATA
15. OUTPUT PARAMETERS (Only for test purposes)
16. PARAMETERS (Only for test purposes)
17. REST (Only for test purposes)
18. STOP (Mainly for test purposes)
19. START (Only directive card)
20. END (Only directive card)

Only directives \(2,4,7,8,9,10,19\) and 20 are normally used. The input data up to a START-directive constitute a data set which is considered by the program as one unit. As a rule the sequence of directives within a data set is immaterial, with some exceptions:
a) If restart data are used to define the start conditions, the RESTART directive should precede the other directives.
b) The START directive is the last directive in each data set and an END directive, which terminates the integration, should be placed after the last START directive for each nuclide (mother and daughter(s)).

The cards following the directive are described below.
```

4.3.1 RESTART directive (Presently not used)
4.3.2 TITLE_directive Format 13A6,A2
An arbitrary title could be given. The program will
then print date and time of run.

```
4.3.3 LIMITS directive
Upper limit for time usage (lowest of this limit
and time limit set by JOB-card is used)
Type 1 Format E8.0
Pos 1-8: \(\quad t_{\text {max }}^{C}=\) execution time limit (In decimal
    cp-seconds).
    Standard value \(=1000 \mathrm{~s}\) (Initially set by
    the program).
4.3.4 IONG TIME MODEL (Presently not used)
Type 1
Pos 1-4: ILO \(=\) Long-time parameter
    -1 means not long-time model
    1 means use long-time model with old
    values of parameters
    2 as 1 , but read new values of long-time
    parameters
Type 2 Long-time parameters
Pos 1-8: HKRIS = maximum IMPEX time-step allowed
    across critical points. Standard value \(=\)
    10 s .
Card 2 is read only if \(I L O=2\).
```

4.3.5 _INTEGRATION_card Format: 4I4,8E8.0
Here the conditions affecting integration routines
are determined.

```

Type
Pos 1-4: Integration method:
1 means Euler method
2 means Explicit method (DIFSYS)
3 means Implicit method (IMPEX)
4 means Implicit method (GEAR, only some versions)

Pos 5-8: \(\quad n_{s}\). If Euler integration is used each \(n_{s}\) timestep is printed. If other methods are used each \(\mathrm{n}_{\mathrm{s}}\) result is written into the restart file 11. ( \(n_{s}=0\) or blank gives the same output as \(\mathrm{n}_{\mathrm{s}}=\) 1. \(^{\text {) }}\).

Pos 9-12: \(i_{\text {hit }}\). If \(i_{\text {hit }}=1\), no effort is made by the implicit method to hit the final time specified.

Pos 13-16: Not used.

Pos 17-24: \(t_{\text {start }}\) seconds. Starting time. Ignored at restart.

Pos 25-32: \(t_{\text {end }}\) seconds. Final time. The executions stops when \(t>t_{\text {end }}\).

Pos 33-40: \(\Delta t\) seconds. Initial timestep. When using implicit method \(\Delta t\) should be less than (tend \({ }^{-t}\) start \() / 4\), or else the step will be set to ( \(t_{\text {end }}{ }^{-t_{\text {start }}}\) )/4.

Pos 41-48: \(\varepsilon=\max\) allowed global error. Ignored for EULER integration.

Pos 49-64: Not used.

Pos 65-72: \(\Delta t_{m i n}=\) minimum timestep for implicit integration. Integration is cut off if IMPEX tries to use timesteps shorter than \(\Delta t_{\min }\).

Pos 73-80: \(\Delta t_{\max }=\) maximum timestep for implicit integration. If no value is given, the program uses \(\Delta t_{\max }=1000 *\) the value given in Pos 33-40.
```

4.3.6 _TMPLICIT PARAMETERS
The directive is used to modify the procedures used
to compute the implicit solution. Pos 1-8 are not used
in BIOPATH. Normally the standard values initially set
by the program are sufficient.
Card 1 Format: 8I4,3E8.0
Pos 1-4: m}\mp@subsup{m}{\mathrm{ fast }}{}=\mathrm{ method used for jacobian elements.
Pos 5-8: JACOB = method used during jacobian com-
putation.
Pos 9-12: nero. If eromin < ero < eromax, nero
iterations are allowed before the jacobian
is recomputed.
Pos 13-16: m}\mp@subsup{m}{recomp = maximum number of recomputations}{
of jacobians for each point.
Pos 17-20: miter = maximum number of iterations for
each point

```

Pos 21-24: \(m_{s t v}=\) method used for start value computation

0 meang guadratic extrapolation through three Last points

1 means linear extrapolation by least square points fit through three last points

2 means lineax extrapolation through two last points

3 means linear extrapolation through last and third last point

Note, that the points used are by necessity un-smoothed, and may therefore contain relatively great errors of different signs.

Pos 24-28: \({ }^{n}{ }_{x m p}=\) number of old jacobians saved (0 or 1) O Usually 0 should be used.

Pos 29-32: Minc \(=\) minimum number of steps until increase of stepsize is allowed.

Pos 33-40: \(\beta_{m m p}=\) jacobian underrelaxation factor. If \(\beta_{\text {rmp }}>0\) instead of the new jacobian, a weighted average between the old jacobian and the new is used:
\[
J=\left(1-B_{\text {mpp }}\right) J_{\text {new }}+\beta_{\text {rmp }} J_{o l d}
\]

Pos 41-48: eromin \(=\) acceptable inverse convergence rate. If ero 6 eromin the old jacobian will be used.

Pos 49-56: exo \(\quad\) max \(=\) not accoptable inverse convergence rate. If ero \(>\) eromin, a new jacobian will be computed.

Pos 57-64: BIWF = Factor for computing error weights in implicit method \(w_{i}=B I W F /\left|Y_{i}\right|+\) \(+(1-B I W F) \min \left(W_{i}, 1 /\left|y_{i}\right|\right)\)

The inverse convergence rate is computed as
\[
\text { ero }=\operatorname{SQRT}\left(\left(\Sigma\left(W_{i} \Delta y_{i}^{n}\right)^{2}\right) /\left(\Sigma\left(w_{i} \Delta y_{i}^{n-1}\right)^{2}\right)\right)
\]

If convergence is not achieved within the iterations specified by \(m_{r e c o m p}\) and \(m_{i t e r '}\) the procedure backs one steps and restarts with half the earlier stepsize.

If no data have been given, the following values are used:
\(0,0,0,8,2,0,0,0,0,0.2,0.2,0\).
```

4.3.7 SOURCES Format: Free
Reads source data for mother nuclide.
Card 1
NCG : Number of compartments containing sources
(0\leqNCG\leq17).

```

\section*{Card 2}
\(\operatorname{IFV}(i), i=1, N C G:\) Compartment indices

Card 3A
NG(i) : Number of time table entries for source i

Card. 3B
\(\operatorname{TGV}(j, i), G V(j, i), j=1, \ldots, N G(i):\) Table containing time and source strength for source i.

Data of type \(3 A\) and \(3 B\) are repeated NCG times in order 3A, 3B, 3A, 3B etc corresponding to \(i=1,2 \ldots\) NCG.
```

4.3.8 MATRICES Format: Free
Under this directive two matrices AI1(i,j) and
AI2(i,j) are specified.
Cargd_1
JUA1 = File index for AI1
= -2 means AI1 (i,j) is set = AD(i,j)
-1 - " - AM(i,j)
0 means no action
>0 means READ (JUA1,*)((AI1 (i,j),i=1,N),
j=1,N)
JUA2 = Same action as JUA1, but for AI2 instead
of AI1.
KUA1 = Treatment index for AI1
>0 means set AI1(i,i) such that \sumAI1(i,j)=0
<0 means set
AI1(i,i) = -DCM (KUA1 = - 1),
AI1(i,i) = -DCD (KUA1= -2) or
AI1(i,i) = \sum {AI1(i,j) (KUA1< -2)
Then set AI1(i,j)=0 for j\not=i.
KUA2 = Same action as KUA1, but for AI2.

```

Card_2_and_3
These data are read only if JUA1 \(>0\) or JUA2 \(>0\), see above.

Comment: By using e.g. KUA1=1 and KUA2 \(=-3\), AI1 will contain the transfer coefficients and AI2 the decay constant. It will then be easy to modify AI1 without affecting the decay constant.

\subsection*{4.3.9 _VARIATIONS Format: Free}

Card_1
\(\begin{aligned} \text { NVA } \quad= & \text { Number of new models of variation for the } \\ & \text { coefficient matrix } A(i, j)\end{aligned}\)

IVAA \(\quad=\) Index of the model of variation applied to AI1 (i,j) and AI2 (i,j). If IVAA=0, A(i,j) is set to AI1 \((i, j)\).

If NVA \(\leq 0\), data of type 2 and 3 are not read.

Card_2
i \(\quad=\) Index of the model of variation to be specified. First value \(=1\) and max value \(=9\). Must be increasing with "1" for each new model. (It is though possible to do e.g. in the following way:

First specify models 1, 2, 3, 4. Then after some time change models 3 and 4 and add models 5, 6, 7 by specifying models 3, 4, 5, 6,7 etc. This could be a way to overcome the limitation to 9 values.)
```

MEVA(i) = Method of variation (see below and exhibit 2).

``` ( \(0 \leq\) MEVA(i) \(\leq 6\) specifies the value of FA1).

FA2M(i) = Method for FA2
\(<0\) means FA2 \(=1\)-FA1
\(\geq 0\) means FA2 \(=\) FA2M(i)

TA1 (i) = Start time for periodical variations (Methods MEVA(i)=1,2 or 3).
```

PERIOD(i) = Length of period (Only valid for
MEVA(i)=1,2 or 3)
NT(i) = Number of table values.
NT(i) \geq2 if MEVA(i) = 4 or 5.
NT(i) = 0 for other values of MEVA(i).

```

\section*{Card_3}

These data are read only when \(\operatorname{MEVA}(i)=4\) or 5. The data define a time table for the factor of variation.

TAA(L) \(=\) Time entry
\(T A B(L)=\) Corresponding value of FA1.

The data are repeated NT(i) times in the order TAA(1), \(\operatorname{TAB}(1), T A A(2), \ldots, T A B(N T(i))\)

Methods of variation (Compare exhibit 3)
The following are allowed values of \(M=M E V A(i):\)
\(M=0\) means \(\mathrm{FA} 1=1\)

M=1 means stepwise periodicity:
\[
\begin{aligned}
& \mathrm{FA} 1=1 \text { for } \mathrm{TA} 1+\mathrm{n} \cdot \mathrm{DTA} 12 \leq t<\mathrm{TA} 1+(\mathrm{n}+0.5) \mathrm{DTA} 12 \\
& \mathrm{FA} 1=0 \text { for } \mathrm{TA} 1+(\mathrm{n}+0.5) \mathrm{DTA} 12 \leq t<\mathrm{TA} 1+(\mathrm{n}+1) \mathrm{DTA} 12
\end{aligned}
\]

M=2 means linear periodicity, i.e. linear interpola-
tion between
\[
\left.\begin{array}{l}
F A 1=1 \text { for } t=T A 1+n \cdot D T A 12 \\
F A 1=0 \text { for } t=T A 1+(n+0.5) D T A 12
\end{array}\right\} \quad n=0,1, \ldots
\]

M=3 means sinusoidal periodicity:
\[
E A 1=[\cos [(t-T A 1) \cdot 2 \pi / D T A 12]+1] / 2 .
\]
\(M=4\) means that \(F A 1=T A B(L)\) for \(T A A(L) \leq t<T A A(L+1)\) (Compare cards of type 3 above).

M=5 means that FA1 is obtained through linear interpolation in the table defined by TAA(L), TAB(L).
\(M=6\) means that \(F A 1\) is obtained by a user-supplied function FA1F (META,T)
\(M \geq 7\) means that \(A(i, j)\) and \(\partial(A(i, j) / \partial y\) are computed by user supplied subroutines UF (M, 17,T,A) and UDFDY ( \(\mathrm{M}, 17, \mathrm{~T}, \mathrm{Y}, \mathrm{A}\) ) (Compare subroutines VARA and DFDY).
```

4.3.10_ AIJ-variations Format: Free
Allows different a ij to have different types of varia-
tion. JUN is presently file 7.
Card_1 = READ(JUN,*)NAIJ
NAIJ = Number of a ij with separate variations.
If NAIJ \leq 0 cards of type 2 are not read,
and any former specification of AIJ-varia-
tions is cancelled.

```

```

i = Index for A(i,j) i.e. indices for transport
coefficient from compartment j to compart-
ment i.
mij = Index of any of the models specified under
directive variations
a(1) = New value corresponding to AI1(i,j)
a(2) = New value corresponding to AI2(i,j)
a}\mp@subsup{i}{j}{\prime}(t) is set to FA1\cdota (1) +FA2*a (2), where FA1 and
FA2 are determined by MEVA(m}ij) and t.
The input data of type 2 are repeated NAIJ times.
Note that

```
a) The action corresponding to this directive is applied after any other variation specified, i.e. it is possible to specify one overall variation using AI1 and AI2 and then modify it for certain \(a_{i j}: s\) by the present directive.
b) The diagonal term is automatically modified in a consistent way, i.e. \(\Delta a_{j j}=-\Delta a_{i j}\)
```

4.3.11. INPUT FILE Format: Free
|JSO| = New input file for source data. If positive
the file is rewound. (Until this card is read,
TAPE 7 is used for source data to version
BIOPATH-2)

```
4.3.12_ REWIND_RESTART_FILE (Presently not used)
No cards needed except directive. The result is that
the restart output file (FORTRAN unit 11) is rewound
after each creation, i.e. only the latest restart
file created will be available. The directive is
suitable when restart data is saved on expensive media.
Warning! If the run terminates while writing restart
    data, the restart file will be unusable.
4.3.13_ NO_REWIND OF_RESTART_FILE (Presently not used) No cards except directive. The directive is needed only for terminating the effect of the preceeding directive, since standard is "no rewind".

\subsection*{4.3.14_ PRESENT DATA}

No cards except directive. Gives an account of the data presently used.

Note: This is an exception from the rule that action takes place only after reading START directive.
4.3.15_ OUTPUT PARAMETERS (Presently not used)

Card_ 1 Format: 40I1
Pos 1-40: \(K_{i} \quad i=1,40 \quad\) (usually 0 or 1 )
4.3.16_ PARAMETER-card Format: 8011

This card is mainly used by the programmer in order
to get more information about program behaviour.

Card_1
Pos 1 : not used
" 2 : =1 gives output of time \(T\) in RECOMP
" 3 : not used
" 4 : not used
" 5 : =1 gives output of \(T\) and \(y\) entering PVAL
" 6 : >0 gives some output for MOTHER in subroutine SOURCE (Number of lines per call = \(\mathrm{P} 6+1\) )
" 7 : As P6, but for DAUGHTER
" 8 : Test output in subroutine VARA
" 9 :
" 10 :
" 11 : - "
" 12 : - " -
" 13 : Not used
" 14 : Not used
" 15 : >0 gives output of \(\mathrm{DY}(\mathrm{i}), \mathrm{i}=1, \min (10 * \mathrm{P} 15, \mathrm{~N})\)
in subroutine \(F\)
" 16-22: Not used
" 23 : >0 means output in LONG onto file \(=\) P23
" 24 : - - SMOTEX onto file = P24
" 25 : >0 means output in KRIS
```

 Pos 26 to 31: Not used
 Pos 32 and 33: Gives some output in COPRIN
 Pos 34 to 41: Not used
 Pos 42 : =1 gives output of }\varepsilon\mathrm{ and }T\mathrm{ in routine
 ITERAT.
 =2 gives output of e, T and of IT, AMAX
 and ERO for each iteration in routine
 ITERAT.
 Pos 43:=1 gives output of F1(i),SW(i),W(i),
i=1,N in routine ITERAT.
Pos 44:=1 gives output of Jacobian and iteration
matrix in routine RECOMP.
Pos 45: = = gives output of Z(i), i=1,N with format
1P10E11.3
=2 gives output of Z(i), i=1,N with format
1P8E14.6 (routine ITERAT).
Pos 46 to 49 : Not used
Pos 50 : Used in the routine FIMPX3 to control
variation of stepsize h:
0 and 1 means variation of h allowed
2 and 3 means constant h
Pos 51:=0 or 2 means no trace
=1 means trace of implicit computation
(routine IMPLIC)
Pos 52 : =1 gives output of IGIT etc on unit 6
(implicit method, routine COPRIN)
Pos 53:=1 gives output of y(i), i=1,N on unit }
=2 gives output of Y(i), ERR(i), i=1,N on
unit 6 (implicit method, routine COPRIN)

```

Pos 54 to 60: Not used

Pos 61-80 are used to gather information on number of calls to different routines. The figures printed represent the number of calls since last time directive PARAMETERS was read. They are printed in the following order:

Pos 61 : Not used
Pos 62 : RECOMP
Pos 63 and 64: Not used
POS 65 : FVAL
Pos 66 : PRINT
Pos 67 : \(F\)
Pos 68 to 71: Not used
Pos 72 : DFDY
Pos 73 : ITERAT
Pos 74 to 80: Not used
```

4.3.17 TEST
Presently not umed.

```
4.3.18. STOP

Causes an Immediate end of execution manly used for test puxposes.
4.3.19- START

No cards except arective.

Execution will staxt, taking into consiclexation all data up to START directive. If corxections have been made on input data the latest values submitted will be used.
4.3 .20 END

No caras except directive.

Wi11 cause a normal end of integration. Used to terminate integration for each nuclide (mother, daughter).

\section*{5. INPUT EXAMPLE}

Exhibit 4 shows an example of input data consisting of two files DNP2 37 and SNP237 respectively.

In this example the dose rates caused by continuous release of the isotope \(N 237\) are calculated as a function of time. More detailed information about the inputparameters is possible to get in the input data description, chapter 4 in this report.

The SNP237-file is the release data.

The DNP237-file consists of nuclide specific data among other data.

\section*{6. REFERENCES}
1. R.Bergman, U.Bergström, S.Evans

Dose and dose commitment from groundwater-borne radioactive elements in the final storage of spent nuclear fuel. Studsvik/K2-79/92.
2. Smith et al

Eigensystem routines - EISPAC Guide Lecture notes in computer science Springer-Verlag, New York 1974
3. K.Larsson, J-E Marklund COPTA - A computer model for the analysis of containment pressure transients AE-RD-79, 1975-03-10
4. B.Lindberg IMPEX - A program package for solution of systems of stiff differential equations.

Report NA 72.50
Dep of information processing, The Royal Institute of Technology, Stockholm, Sweden
5. B. Lindberg

Error estimates and stepsize strategy for the implicit midpoint rule with smoothing and extrapolation. Report NA 72.59

Dep of information processing, The Royal Institute of Technology, Stockholm
6. B.Linaberg

IMPEX 2, a procedure for solution of systems of stiff differential equations. Report TRITA-NA-7303 Dep of information processing, The Royal Institute of Technology, Stockholm
7. B.Frock, I.Karasalo and J.Oppelstrup FIMPX 2 - A Fortran program for the solution of systems of stiff differential equations.
Institutet för tillämpad matematik, Stockholm
8. W.H.Enright, T.E.Hull, B.Lindberg

Comparing numerical methods for stiff systems of ODE: s

BIT 15 (1975) p 10.48
9. J-E Marklund

Införande av tidsberoende koefficientmatriser i BIOPATH
T2-79/54, K2-79/233

\section*{7. EXHIBITS}

The following pages contain the figures:
1. Examples of possible control cards
2. Procedure file BIOPATH
3. Methods of variation for FA1 (functions related to the time dependant transfers)
4. Inout example

\section*{SUB/O}

\section*{/JOH}
/READ KONTO

/READ STOP
IEOR
/EDF

\section*{SUPLOT}
/JOB
/READ KCNTO
ATTACH. OLDARC=OABIOL.
ARCSEL.ARLOT
GET.TAPE2O.
* plot rejult

REWINO(TAPE?C)
\(F I L E, T A P E=O, G T=K, R T=F, R B=1, F L=1320, M B L=1320\).
LOSET(FILES=TAPE4O.LIB=PLJTLIB)
RPLOT.
LAREL,T,H,P \(I=H, L=P L O T I, D=H D, F=S, V S N=A 1425 . R I N G\)
REWIND. TADE \(\rightarrow\) O.
COPYBF. TAPE C. T.
OPCUH.PLDTTA A1425 JEM KONTO D93U1
/READ STOP
JEOR
/EOR
JEOF \(\qquad\)

Exhibit 1. Examples of possible control cards
```

BIOPATH
ATPACH.OLOARC=OABIOL/NA.
IF(FILE(OLOARC.ASI)GOTO.71.
DEFINE,OLDARC=OABIO\&/CT=P%.
LABEL,T,R,PO=F, L=JAN3O.VSN=A142O,1ORING
SKPPF,T,7.
COPYBF.T.OLOARC.
RETURN.T.
REWINO,OLOARC.
GOT0.72.
71. ATTACH, OLOARC=OABIO4.
72. IF(YERS.SO.D)GOTO.79.
GET,TADEZ=DATA/NA.
IF(FIGE(TAP:2.AS))GOTO.72.
72.GET.TAPEG=SOURCE/NA.
IF(FILE(TAPS4,AS))GOTO,74.
74. BF:VERS.NE.11GOTO.75.
ARCSEL,A/R131O,B/R3BIO,C/EISP
GOTO,77.
75.ARCSEL.A/R2310.B/R3810,C/R4310
GET,TAPET=INT.
IF(FIIE(TAPS7.AS))GOTO.77.
77.RETURN, OLDARC.
MAD,OFF.
LDSET, PRESET=?ERO.
LOAD,A,B,C.
NOGO.AA.
AA.
IF(SAVE.EQ. YESISAVE.TADEZO.
IF(REP.EQ.YES)REPLACE.TAPE2O.
REWIND,TAPE20.
CATALOG.TAPS2).
79.REWIND,TAPE?O.

```


Exhibit 3 Methods of variation for FA1
(functions related to the time dependant transfers)
 \(0.30 .8760 .00 .07,18\)
\(10.10 .55 . E-6,1 . E-E, 1 . E-4\) 1500
\(2-38 E t\)
 0., 118., 50.,20., 2e. 50.,0.4,0., 0.




EEIIAENTI
HFIIHTA
FT
EDin
8． 8.0 JJE＋ 06
8.1 n0E +0 \(8.12 \mathrm{JE}+20\) \(8.130 E+20\) \(8.150 E+j 6\) \(8.150 E+30\) \(8.180 \mathrm{E}+70\) 8．こうクE＋j6 \(8.210 E+30\) \(8.23 J E+26\) 8． \(240 E+{ }^{2} 6\) R． \(240 E+50\)
\(R .25) E+20\) \(8.270 \mathrm{E}+30\) \(8.290 E+j 0\) 8． 310 E おう 8． 32 JE＋．）6 8．₹ \(4: E+j 0\) E．ZjOE－0 \(8.37 J E+36\) \(8.35 J E+J 6\)
0.
7.730 E－14 7．350E－12 3．23（E－1） 3． 23
9.
\(1.2 C E-C O\) 9．O OCE－CO
\(1 .-9 C E-C 7\) 1．\(P C E-C 7\)
1． \(35 C E-0\) ； －． 790 E － C 3．795E－05 \(0.010 E-C 5\)
1．32CF－6
1．18CE－C4
6．55CE－（；
2． 25 （E－CJ
\(4.730 \mathrm{E}-0\) ， \(0.210 \mathrm{E}-\mathrm{C} 7\) E． 16 C E－06 2．61CE－09 2． 61 CE－09
f． 25 UE－ 11 1． \(570 E-12\)
9．36CE－1 ）
\begin{tabular}{|c|c|c|c|}
\hline 3．a8うEかつ & 1．5フOE－15 & 3．08CE UT & 4．36CF－15 \\
\hline 8． 3 90E＋50 & \(1.910=-13\) & \(3.000 E+C C\) & 9．01（E－13 \\
\hline E．110E＋J6 & \(1.40 C E-11\) & \(8.11 \mathrm{CE}+\mathrm{U} 6\) & 6．SELE－11 \\
\hline ع． \(120 \mathrm{E}+50\) & \(0.130 \mathrm{E}-10\) & \(6.120 E+56\) & 1．540E－0． 9 \\
\hline 8． \(140 \mathrm{~L}+00\) & 1．55CE－C8 & \(8.140 \mathrm{E}+00\) & 3．2CCF－08 \\
\hline 8．15JE＋JO & 2．37CE－C7 & 8.1 OCE +00 & 6． \(210 \mathrm{C}-\mathrm{C} 7\) \\
\hline \(8.170 \mathrm{E}+30\) & 2．2705－06 & \(8.170 \mathrm{E}+06\) & 3．690E－00 \\
\hline \(8.180 \mathrm{E}+30\) & 1．310 5－C゙5 & \(8.10 ¢ E+j 0\) & 1．78CE－05 \\
\hline 8．2CJE－JO & 4．600f－C5 & 8．200E＋06 & 5．07CE－C5 \\
\hline \(8.21 J E+50\) & \(1.0105-04\) & 8．22CE＋06 & \(1.110 \mathrm{~F}-04\) \\
\hline \(3.230 E+\) ソo & \(1.350 \mathrm{E}-\mathrm{C} 4\) & R． \(230 \mathrm{E}+100\) & 1．34OF－C4 \\
\hline \(6.250 E+30\) & 1．60CE－C4 & B． 250 E ＋00 & 9．92CE－05 \\
\hline 8． \(20.15+j 0\) & 5．40ic－15 & \(8.201 \mathrm{E}+196\) & \(4.480 E-C 5\) \\
\hline \(8.280 E+50\) & 1．700E－C5 & \(8.280 \mathrm{E}+10\) & 1．26CE－05 \\
\hline 8．290E＋30 & 3．270E－Co & 8．300 E 00 & 2．100E－06 \\
\hline 8．310E＋00 & 3.8 万CE－C7 & R．31EE＊06 & 2．10CF－C7 \\
\hline \(8.320 E+30\) & 2．92CE－で8 & 8．3IvE＋ 6 & 1．300F－C8 \\
\hline \(8.342 \mathrm{E}+30\) & 1．340E－C．9 & 5．34CE＋00 & \(5.210 E-10\) \\
\hline \(6.300 E+30\) & 3．900E－11 & 8．300 E＋00 & 1．260＝－11 \\
\hline 6．37JE＋Jo & 7．44CE－13 & 8．37CE＋06 & 1． \(580=-13\) \\
\hline E．390E－00 & 3．640E－15 & & \\
\hline
\end{tabular}

8.0 CCE 56 8．100E＋06 8．1？CE＋26 \(8.1305+05\) \(8.150 F+C 0\) \(8.1 \leq 0 E+C 0\) 8．190E＋Jo \(8.160 E+0 t\) \(8.160=+06\) \(8.21 C E+76\) \(8.2205+06\) \(8.2405+00\) 8．250F＋006 \(8.270 \mathrm{E}+00\) \(8.200 E+36\) \(8.30 C E+C O\) \(8.320 E+10\) \(8.33 C F+20\) \(8.33 C F+C O\)
\(8.50 F+00\) 8．3．0E＋00 1．5605－ 8．37CE＋C6 3．290E－12 8．34CE＋30 2．410F－14

The SNP237－file，which contains the release of the activity at different times．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{} \\
\hline ＇\％ & \multirow[t]{10}{*}{} & \multicolumn{4}{|l|}{SLAK} \\
\hline － & & \multicolumn{4}{|l|}{} \\
\hline \(\stackrel{\text { H }}{0}\) & & \multicolumn{4}{|l|}{} \\
\hline 皆菬 & & \multicolumn{4}{|l|}{} \\
\hline － & & \multicolumn{4}{|l|}{} \\
\hline \(\stackrel{\sim}{\top}\) & & \multicolumn{4}{|l|}{S．DEE 4．DE，SuTVE1，5．430，} \\
\hline \％ & & \multicolumn{4}{|l|}{} \\
\hline 号 & & \multicolumn{4}{|l|}{} \\
\hline \(\bigcirc\) & & \multicolumn{4}{|l|}{1．EE4，1．ET，1．ET，1．ES，1．EES，} \\
\hline － 0 & & \multicolumn{4}{|l|}{} \\
\hline & & \multicolumn{4}{|l|}{} \\
\hline ¢ & & \multicolumn{4}{|l|}{} \\
\hline ャー． & & \multicolumn{4}{|l|}{1．4Eこ1，S．EE1G，1．EE15．4．4E17．GE19，E．E15} \\
\hline 官官 & & \multicolumn{4}{|l|}{EEG，1．E10} \\
\hline & & \multicolumn{4}{|l|}{E． 3 ，DEE} \\
\hline \(\stackrel{+}{+0}\) & & \multicolumn{4}{|l|}{O． O E．DEES S．DEEE E．DES} \\
\hline － & & \multicolumn{4}{|l|}{30 E．SEE 1．DEE} \\
\hline ？ & & \multicolumn{4}{|l|}{\(\mathrm{E}, 10 \mathrm{E}\)} \\
\hline \(\square\) & &  & ATMEEG YTUATTEH & SEDIMEHT & \\
\hline \(\bigcirc\) & & OSJİEH FTMOEFÄF WELLMIXEH LIEEF SEA & SEIIMEHT EEIDTA & IGEIT & GFMHIMGLDE \\
\hline \(\stackrel{\sim}{\square}\) & & SEIIMEHT1 & & & \\
\hline \(\stackrel{\rightharpoonup}{\square}\) & & HFEST SLAK & & & \\
\hline & & HFPIATH & & & \\
\hline 5 & & \(173.239 \mathrm{E}-7\) 1．E－6 & & & \\
\hline ＇08 & & FT & & & \\
\hline \(\stackrel{+}{+}\) & & \(3.23 \mathrm{E}-7\) & & & \\
\hline \(\stackrel{0}{0}\) & &  & \％．日．ロ．日．日．日．日． & 11. & \\
\hline \(\pm\) & &  & 1．日．0．11．1．日． 1. & II． 1. & \\
\hline & &  & 0．O．I．0．日．0． & & \\
\hline 5 & & ！． 004 0．－－00centess 1．1E－． 0012 & O．O．日．日． 1.10. & 19． 1 I． & \\
\hline & &  & 189．亿．150． 0.0. & 日．！． & \\
\hline \({ }_{\mathrm{H}}^{\mathrm{H}}\) & &  & 1．O．1．10．日．0．⿺𠃊 & 11．I． & \\
\hline \(\stackrel{0}{0}\) & &  & O．O．O．O．O．日． & II． & \\
\hline H & &  & 0． 0143 \％．\％．0．日． & 1． 10. & \\
\hline ＋ & & O．O．0．0．0．0．1．． \(43-.43000035\) & 9．日．0．日．日．日．！． & 1. & \\
\hline 0 & & 日．！．O．\％．．01E \％．\％．日．日．-13.51600 & 9239 13．0．0．1． 5 & 511.10 & \\
\hline & &  & 4939.11 日．O．1．FE & 日．． 080 & \\
\hline & &  & －105803239 ．Dis 0． & 日． 1. & \\
\hline & &  &  & & \\
\hline & &  & －3．こうをE－7 日．и．п． & & \\
\hline & &  & \％I！．If．－004069 & 39.001 & \\
\hline & &  &  & 203239 & \\
\hline & &  & U．O．B．－5tomout & & \\
\hline
\end{tabular}
\(0.003 E+0\)
8
 \(8.12{ }^{2} \mathrm{E}+30\) \(8.130 E+9\) 8．130E＋． 0 \(8.150 E+j 6\) \(8.15 J E+30\)
\(8.18 J E+90\) 8．こうつE＋j6 \(8.210 E+30\) \(8.23 J E+26\) R． \(240 \mathrm{E}+\mathrm{Z} 6\) R． \(240 E+: 8\) \(8.23 J E+20\)
\(8.270 E+J 0\) R． \(200 \mathrm{E}+30\) 8． \(310 \mathrm{E}+50\) \(8.32 J E+36\) R．34：E＋JO E．？ \(30 E+00\) \(8.370 E+30\) \(8.35 J E+36\)

7．350E－12
3．23（E－1） －O3CE－CO 9．03CE－CO 1． \(490 \varepsilon-C 7\) 1． \(550 E-C\) j 0.790 E－ 10 3． 79 EE－03 \(0.010 E-C 5\) 1．32CE－C． 1． 1 18 1． \(13 \mathrm{CLE}-\mathrm{C}\) 2．25CE－C
2． 4．79CE－0） \(0.210 E-C 7\) ：．160E－08 2．61CE－00 f． 25 LiE－11 1． 25 CEE－11 0.36 CE－15
\begin{tabular}{|c|c|c|c|}
\hline 3．18JE＋J） & 1．5フ0E－15 & 8．0ACE UE & 4．30CF－15 \\
\hline 8．j90E＋50 & \(1.910=-13\) & \(3.000 E+C C\) & 9．01CE－13 \\
\hline E． \(110 \mathrm{E}+36\) & 1．40CE－11 & 8．11CE＋U6 & 4．5CLE－11 \\
\hline E． \(120 E+j 0\) & 0．130E－10 & \(8.1205+6\) & 1．540E－C9 \\
\hline E． \(140 \mathrm{~L}+60\) & 1．55CE－08 & B． \(140 E+00\) & 3． \(2 \mathrm{CCF}-08\) \\
\hline E．15JE＋30 & \(2.37 \mathrm{C}=-67\) & 8． 1 OCE＋00 & 4．210E－C7 \\
\hline \(8.170 \mathrm{E}+30\) & 2．2．05－06 & 8． \(170 \mathrm{~F}+0 \mathrm{C}\) & 3．290E－00 \\
\hline 8．180E＋20 & 1．310 5－C゙5 & 8． 1 Of E＋jo & 1．78CE－05 \\
\hline 8．2CJE＋J0 & 4．600f－C5 & 8．2U0F＋06 & 5．07CE－05 \\
\hline 8．21JE＋ごO & \(1.0105-04\) & 8．22CE＋06 & 1．110F－02 \\
\hline 8． \(230 \mathrm{E}+\hat{\text { 今o }}\) & 1．350E－C． & \(9.230 E+00\) & 1．3－OF－C4 \\
\hline 6．250E＋30 & 1．0）OCE－iL & B． \(25 C E+00\) & 9．92CE－05 \\
\hline 8． \(206 \mathrm{E}+00\) & 5．48íc－15 & 6． \(206 \mathrm{E}+176\) & \(4.4 E 0 E-C 5\) \\
\hline 8．280E＋Jo & 1．700E－C5 & 8． \(280 \mathrm{E}+06\) & 1．24CE－05 \\
\hline B．290E＋30 & 3．270E－C6 & \(8.302 \mathrm{E}+00\) & 2．900E－06 \\
\hline E．310E＋00 & 3.8 万CE－C7 & R．31しE＋00 & 2．10CF－C7 \\
\hline \(8.320 E+20\) & 2．92CE－「8 & 8． 3 3 \(5 E+1.6\) & 1．300F－C8 \\
\hline  & 1．3COE－C9 & 6．34CE 30 & 5．210E－10 \\
\hline 6．300E＊） 0 & 3．900E－11 & 8．30べ \(\mathrm{E}+\mathrm{Jo}\) & 1．240＝－11 \\
\hline 8．37JE＋Jo & 7．44CE－1？ & 8．37CE＋06 & 1．560c－13 \\
\hline 8．390E－00 & 3．6LCE－15 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 8．C8jE＋je & \(1.170 \mathrm{E}-16\) \\
\hline 2． \(10 J \mathrm{~F}+00\) & 1．950E－12 \\
\hline 8．11こE＋じ & 9．350E－11 \\
\hline 8．13EE＋00 & －．930E－09 \\
\hline 3．140E＋35 & 5．57CE－09 \\
\hline 9．9eこと＋Ct & 6．85CE－i7 \\
\hline 8．17jF＋C6 & \(5.100 \mathrm{E}-\mathrm{CO}\) \\
\hline 8．19：E＋こ6 & 2.350 E － 5 \\
\hline 6． \(20 \mathrm{CE}+\mathrm{CO}\) & 0．75UE－C5 \\
\hline B． 2 2JE＋io & 1．200E－04 \\
\hline 9．24－ \(\mathrm{F}+1{ }^{\text {P }}\) & \(1.310 \mathrm{~F}-06\) \\
\hline 8． 25 ： \(\mathrm{E}+00\) & 6．80CE－05 \\
\hline \(8.270 E+C 0\) & 3．630E－C5 \\
\hline 8． \(280 \mathrm{E}+00\) & 9． \(2=0 \mathrm{E}-06\) \\
\hline B． \(30 J E+06\) & 1．43CE－C6 \\
\hline 8． 31\() \mathrm{F}+\mathrm{i} 0\) & 1．370E－07 \\
\hline 3．33：E＋CO & 8．JOLE－C．9 \\
\hline 8． \(355+00\) & 2．810E－ 10 \\
\hline 9．30こE＋Ot & \(6.460 E-12\) \\
\hline 8．3eje＋06 & 6．270E－14 \\
\hline
\end{tabular}

8．0ccetこo \(8.100 E+06\) \(8.1 \geq C E+36\) \(8.1305+05\) \(8.150 F+C O\) \(8.1+0=+0\) 8．19CE 36 \(8.190 \equiv+06\) \(8.210 E+76\) \(8.210=+\)－ \(8.2205+06\) \(8.2605+00\)
\(8.250 F+06\) \(8.2705+00\) \(8.200 E+06\) 8.3 DCE + CO \(8.320 E+90\) \(8.3 \mathrm{CF}+20\) 8． \(\mathrm{x} 50 \mathrm{EE}+00\) \(8.37 C E+C 6\) \(8.3+C E+30\)

3．C50E－14
\(3.770=-12\) 1．770E－13 5．29CE－09 \(7.330=-08\) 1．0505－90 7．1075－0．5 3．020E－95 ．3705－05 1．270＝－04 1．250F－26 7．37CE－75 2．89CE－05 \(6.760 \mathrm{E}-20\) 9．570E－97 3 510E－02 4． \(5405-39\) 1．5405－10 3． 20 OE－12
2．410E－1L

The SNP237－file，which contains the release of the activity at different times．

TR 121 KBS Technical Reports 1 - 120. Summaries. Stockholm, May 1979.

1979

TR 79-28 The KBS Annual Report 1979. KBS Technical Reports 79-01--79-27. Summaries. Stockholm, March 1980.

TR 80-01 Komplettering och sammanfattning av geohydrologiska undersökningar inom sternöomradet, Karlshamn Lennart Ekman Bengt Gentzschein Sveriges geologiska undersökning, mars 1980

TR 80-02 Modelling of rock mass deformation for radioactive waste repositories in hard rock
Ove Stephansson
Per Jonasson
Department of Rock Mechanics University of Lulea

Tommy Groth
Department of Soil and Rock Mechanics
Royal Institute of Technology, Stockholm 1980-01-29

TR 80-03 GETOUT - a one-dimensional model for groundwater transport of radionuclide decay chains Bertil Grundfelt
Mark Elert
Kemakta konsult \(A B\), January 1980
TR 80-04 Helium retention
Summary of reports and memoranda Gunnar Berggren
Studsvik Energiteknik AB, 1980-02-14

TR 80-05 On the description of the properties of fractured rock using the concept of a porous medium John Stokes
Royal Institute of Technology, Stockholm 1980-05-09

TR 80-06 Alternativa ingjutningstekniker för radioaktiva jonbytarmassor och avfallslösningar Claes Thegerström Studsvik Energiteknik AB, 1980-01-29

TR 80-07 A calculation of the radioactivity induced in PWR cluster control rods with the origen and casmo codes Kim Ekberg Studsvik Energiteknik AB, 1980-03-12

TR 80-08 Groundwater dating by means of isotopes A brief review of methods for dating old groundwater by means of isotopes A computing model for carbon - 14 ages in groundwatêr Barbro Johansson
Naturgeografiska Institutionen Uppsala Universitet, August 1980

TR 80-09 The Bergshamra earthquake sequence of December 23, 1979
Ota Kulhănek, Norris John, Klaus Meyer, Torild van Eck and Rutger Wahlström Seismological Section, Uppsala University Uppsala, Sweden, August 1980

TR 80-10 Kompletterande permeabilitetsmätningar i finnsjöomradet
Leif Carlsson, Bengt Gentzschein, Gunnar Gidlund, Kenth Hansson, Torbjörn Svenson, Ulf Thoregren Sveriges geologiska undersökning, Uppsala, maj 1980

TR 80-11 Water uptake, migration and swelling characteristics
of unsaturated and saturated, highly compacted bentonite Roland Pusch Luleå 1980-09-20 Division Soil Mechanics, University of Luleå

TR 80-12 Drilling holes in rock for final storage of spent nuclear fuel
Gunnar Nord
Stiftelsen Svensk Detonikforskning, september 1980
TR 80-13 Swelling pressure of highly compacted bentonite Roland Pusch
Division Soil Mechanics, University of Lulea Luleá 1980-08-20

TR-80-14 Properties and long-term behaviour of bitumen and radioactive waste-bitumen mixtures Hubert Eschrich Eurochemic, Mol, October 1980

TR 80-15 Aluminium oxide as an encapsulation material for unreprocessed nuclear fuel waste - evaluation from the viewpoint of corrosion
Final Report 1980-03-19
Swedish Corrosion Institute and its reference group
TR 80-16 Permeability of highly compacted bentonite Roland Pusch Division Soil Mechanics, University of Lulea 1980-12-23

TR 80-17 Input description for BIOpATH
Jan-Erik Marklund
Ulla Bergström
Ove Ediund
Studsvik Energiteknik AB, 1980-01-21
TR 80-18 Införande av tidsberoende koefficientmatriser i BIOPATH
Jan-Erik Marklund
Studsvik Energiteknik AB, januari 1980
TR 80-19 Hydrothermal conditions around a radioactive waste repository
Part 1 A mathematical model for the flow of groundwater and heat in fractured rock
Part 2 Numerical solutions
Roger Thunvik
Royal Institute of Technology, Stockholm, Sweden Carol Braester
Israel Institute of Technology, Haifa, Israel December 1980

TR 80-20 BEGAFIP. Programvard, utveckling och benchmarkberäkningar
Göran Olsson
Stanley Svensson
Studsvik Energiteknik AB, 1980-10-14
TR 80-2l Kartläggning av tekniker och metoder för ytkarakterisering av glas/keramer Bengt Rasemo Mellerud, augusti 1980

TR 80-22 Evaluation of five glasses and a glass-ceramic for solidification of Swedish nuclear waste
Larry L Hench
Ladawan Urwongse
Ceramics Division
Department of Materials Science and Engineering University of Florida; Gainesville, Florida 1980-08-16```

