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ABSTRACT 

A limited experimental programme has been per
formed to examine the reaction products on the 
surfaces of fuel fragments from a BWR fuel rod 
which had operated in the defective condition for 
about 100 days. 

A yellow crust which was observed mainly on the 
fuel surfaces directly exposed to the reactor 
coolant water was identified by XRD as the 
sub-monohydrate of schoepite, the same material 
which had been found previously in spent fuel 
corrosion tests in deionized water. 

Other corrosion products with varying morphology 
and size, also probably uo1 hydrate(s), were 
observed on surfaces some aistance from the 
position of clad fracture. 
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INTRODUCTION 

1 

The SKB/STUDSVIK experimental programme for the 

study of the corrosion of spent fuel in ground

waters involves both solution analysis of the 

leachants and examination of the fuel before and 

after water exposure in order to identify attack 

sites and reaction products and hence, to define 

the corrosion mechanisms. 

In the course of the programme, the examination 

of a yellow surface deposit formed on an 

irradiated PWR fuel specimen subjected to a 

corrosion test in deionized water at room 

temperature has been reported [1]. XRD analysis 

of two specimens of the deposit showed that it 

was composed of the sub-monohydrate of schoepite, 

a uo 3 . xH 2o (x = 0.7-0.9), sometimes denoted 

dehydrated schoepite (DS). 

Yellow deposits or crusts are also occasionally 

observed on fuel which has been exposed to 

reactor coolant water during reactor operation 

due to through-wall cracking of the Zircaloy clad 

and subsequent ingress of water or steam. 

Such a fuel rod (BWR rod: O2-13544-HS) has 

recently been subjected to an extensive 

post-irradiation examination in the Studsvik Hot 

Cell Laboratory to determine the cause of 

failure. The primary failure site was located in 

the upper part of the fuel rod, and subsequent 

internal degradation process had caused clad 

fracture about 210 mm from the bottom end. 

Records of the release of radioactivity to the 
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reactor coolant water showed that the fuel rod 

had operated in the defective condition for about 

100 days. 

Post-irradiation examination of the rod was 

completed about 10 months after reactor 

shut-down, a period consisting of both 

water-storage at the reactor station and 

air-storage in the hot cells. Although this 

inevitably implied some uncertainty as to the 

origin of any corrosion products on the fuel 

surface, it was decided to perform a limited 

investigation of the yellow material observed 

near the breached section of the rod. 

2 VISUAL INSPECTION 

The fuel at both sides of the breach appeared to 

be covered by the yellow crust. The lower section 

of the rod, from the fracture position down to 

the bottom end-plug, had not been involved in the 

post-irradiation examination and was available 

for further inspection. 

A section of this part of the rod, about 100 mm 

long, from the fracture downwards, was cut off 

and then sectioned longitudinally through the 

clad to give two halves, denoted here A and B, 

which are shown in Figs. 1 and 2 respectively. 

The fuel in half A remained essentially in its 

original position, while the fuel in half B had 

been disturbed in the cutting operation and 

consisted largely of loose fragments which had 

been moved from their original positions. 
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Inspection of the two halves showed that the 

yellow material was largely restricted to the 

surface exposed directly to the reactor coolant 

water during operation at power, although some 

was also observed at the lower end of half A. At 

higher magnification, the material displayed a 

granular appearance. (Figs. 3a, band d). 

Most of the fuel fragments had a bright lustre 

and were probably fracture surfaces formed on 

reactor shut-down. Some surfaces near the clad, 

however, had a dull appearance and could have 

been those exposed to the coolant during 

operation. A narrow band of fuel at about the 

half-radius position displayed a structure 

similar to columnar grains (Fig. 3c), formed 

during operation under oxic conditions. 

3 STRUCTURAL ANALYSIS 

Samples of the deposit for XRD analysis were 

taken from two positions denoted GI and GII in 

Fig. 1. This was effected by taking selected fuel 

fragments with adherent deposit from these 

positions, and sampling the deposit by pressing 

warmed plastic tape against the surface. Small 

specimens of the material thus removed were then 

mounted in the normal manner and analyzed in a 

Guinier-Hagg focussing camera. Good quality 

diffraction patterns were obtained [2] which 

showed that both specimens consisted of the 

sub-monohydrate of schoepite as reported by 

Dawson et al [3] and which had already been 

identified in earlier corrosion tests on the 
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laboratory scale [1]. No other phase was 

detected. 

4 SEM EXAMINATION 

4 

A rather limited SEM exru~ination was also 

performed in order to record the appearance of 

the surface deposits for future comparison with 

reaction products expected to be found during the 

spent fuel corrosion programme. 

The instrument used, a JEOL-JXA840 analytical 

SEM, although commissioned for use with 

radioactive materials, is only provided with 

local shielding around the spectrometers. It was 

therefore necessary to reduce the size of the 

selected fuel fragment in order to attain 

acceptable working levels of radiation. This was 

effected in a special device in the hot cell, in 

which a fuel fragment with adherent surface crust 

from position GI (see figures 1 and 3a) was 

fragmented into a number of smaller fragments by 

the pressure of a steerable tool. A few of these 

smaller fragments, with volumes up to about 1 mrn3 

were then mounted on warm plastic tape and 

examined in the microscope. 

The appearance of the (yellow) deposit crust at 

about the position sampled for XRD specimen GI is 

shown in Figs. 4 and 5. Although the morphology 

of the material is poorly defined, the larger 

crystals show a resemblance to the material also 

identified as the sub-monohydrate of schoepite 

(dehydrated schoepite-DS) by Taylor et al [4] in 
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their work on the corrosion of unirradiated CANDU 

fuel in steam-water mixtures at 200-225°C. 

A small fragment of the surface crust, from an 

unknown location on the fuel fragment, showed a 

completely different appearance, and consisted of 

sub-micron sized granules and platelets about 2 

microns in size. Qualitative EDS examination of 

both this material and that shown in Figs. 4 and 

5 showed only the presence of uranium. 

It was mentioned earlier in this report that the 

occurrence of the yellow material appeared to be 

restricted mainly to the ends of the fuel column 

directly exposed to the reactor coolant. The 

sharp local boundary to the deposit is shown 

clearly in Fig. 3d. 

A small fragment from the lower end of the 

sampled fuel fragment with surface crust was also 

examined in the scanning electron microscope. At 

low magnifications it was difficult to 

distinguish between the surfaces which had been 

exposed to the reactor coolant and those caused 

by the specimen size reduction technique. At 

higher magnifications, however, the inter- and 

intra-granular fracture typical of the fresh 

fracture surfaces could be clearly seen. This is 

shown in Fig. 7 for comparison with the following 

photographs. 

The appearance of a corroded fragment surface is 

illustrated in Figs. 8 and 9, showing smoothly 

rounded fuel grain surfaces and an irregular 

covering of uo 3 hydrates, with varying morphology 
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and size, located on grain faces and at grain 

boundaries. The fuel grains themselves appear to 

be evenly covered by a granular material of the 

order of 100 nm in size. Two of the fuel pores 

visible in one of the high magnification 

photographs in Fig. 9 are seen to contain 

spherical particles, presumably consisting of the 

fission product metals Mo, Tc, Ru, Rh and Pd, 

either as the original metallic inclusions or as 

oxidized/hydrated reaction products. 

5 DISCUSSION 

The corrosion of uo2 fuel exposed to reactor 

coolant water during power operation, where the 

reactions proceed at fuel surface temperatures 

appreciably higher than 400°C and in an intensely 

radiolytic environment, is not strictly relevant 

to the study of spent fuel corrosion under 

repository conditions. In the repository case, 

radioactive decay during pre-deposition storage 

will reduce fuel temperatures at deposition to 

about 70-80°C, and temperatures at the time of 

possible capsule failure will be much lower. 

Since the relative thermodynamic stabilities of 

possible reaction products will be significantly 

different in the two cases, different reaction 

mechanisms may be favoured. 

The chemical constituents of possible ground

waters, granitic or saline, for example, could 

also markedly affect reaction mechanisms and 

products. 
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In spite of these considerations, the results of 

the limited experimental programme described in 

this report are useful for comparison with 

results from laboratory-scale experiments at 

lower temperatures, particularly those performed 

in deionized water. The main finding, that the 

yellow material found on fuel surfaces near the 

clad breach was the sub-monohydrate of schoepite 

(or dehydrated schoepite DS) is not, of course, 

surprising since this would be the most stable 

hydrate form at temperatures above about 130°C 

[5]. However, the (only) two specimens examined 

by XRD showed the absence of the dehydrate form 

(schoepite itself), which Taylor et al [4] 

detected in some of their experiments and 

tentatively attributed to secondary hydration of 

DS during cooling or handling. The rod examined 

in the present work had been stored in the 

reactor pool for about 3 months before shipping 

to the Studsvik Hot Cell Laboratory. 

No attempt was made in this limited programme to 

positively identify the other corrosion products 

observed on the fuel surfaces, (Figs. 5, 8 and 

9), partly because of shortage of time and partly 

because of some uncertainty with regard to 

whether they were formed in-reactor or during 

subsequent storage. A reasonably assumption, 

however, is that they were uo3 hydrate(s). 

In corrosion tests on spent fuel exposed to 

granitic groundwaters, the amounts of reaction or 

alteration products on the fuel surface are 

significantly lower than those found after 

deionized water exposures, since the carbonate 
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ligands in the groundwater retain in solution as 

complexes some (a few mg/L) of the oxidized and 

dissolved uranium. 

Severe experimental difficulties are involved in 

selectively sampling for analysis such material 

from the highly-active fuel matrix. Comparison of 

the morphologies of observed surface materials 

with those recorded in reference photographs from 

this and other work on spent fuel, and 

well-characterized minerals is expected to 

furnish useful supplementary evidence for the 

necessary identification. 
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