

Piping and erosion in the buffer; Results from downscaled tests

¹ B+Tech Oy, Laulukuja 4, 00420 Helsinki, Finland ² Posiva Oy, Olkiluoto, Finland

Outline

- Overview of downscaled buffer erosion tests
 - "scale 1:6" (or ~ 1m)
 - time ~4 months
 - maximal inflow (Olkiluoto) case: 0.1 l/min
- Statistical analysis of erosion measured from outflow
 - 7 tests
 - ~2.5 years of total test time
 - ~128 m³ of water through buffer bentonite
- Results
 - Erosion is constant in time
 - Erosion is remarkably unsensitive to setup details

- MX-80 blocks and pellets
- Point-like inflow, 0.1 l/min
- Erosion rate: outflow clay content measured by drying

Transu

- Represents outer edge of buffer curvatures different
- Inflow, wetting, erosion, (swelling) in early phase

- Represents outer edge of buffer curvatures different
- Inflow, wetting, erosion, (swelling) in early phase?

- Represents outer edge of buffer curvatures different
- Inflow, wetting, erosion, (swelling) in early phase
- Downscaled bentonite mass saturates in ~4 months

(common pressure source)

 With several inlets/outlets, tendency to "choose" a single channel from one inlet to one outlet.

= Flow focusing dynamics

Transparent cell is transparent

Channel is stable and steady, generally

Stream pools with bentonite detritus

Gap without pellets

1 g/l salt

Channel size and detritus material increases in time

Channel path evolves (slightly) in time

Erosion test matrix

test type	duration (h)	pellet slot (mm)	pellets	inflow salinity (g/l)	average erosion (g/l)
transparent	678	29,5	SKB pillow	1	0.18±0.03
transparent	3143	29,5	SKB pillow	10	0.16±0.05
transparent	2726	29,5	None	1	0.14±0.02
transparent	2664	49,5	Posiva pillow	1	0.23±0.02
transparent	2736	49,5	Posiva pillow	10	0.19±0.04
steel cell	4690	30	SKB pillow	10	0.17±0.05
steel cell	4690	30	SKB pillow	1	0.18±0.09

• Vary: pellet slot, salinity, steel/transparent

Erosion as a function of time

Erosion as a function of time

Erosion rate distribution

Erosion outliers; long tail

Scatter (negative erosion !?!)

Dried outflow sample:

10 g/l salt 0.2 g/l bentonite

Measurement error signal / background

Questions

- Piping channels visually
 - Different between salinity and gap conditions
 - Evolve in time
- Yet erosion keeps constant?
- Erosion rate in pellets observed to decrease in inflow(=time) (Sanden 2010):

 $m_{eroded} = a \cdot (V_{inflow})^{0.65}$

$$c[g/l] = \alpha \cdot t^{-0.35}$$

Swelling (of blocks to channel) controls erosion?

Swelling vs erosion?

• Friedland Clay blocks swell less than MX-80

Swelling vs erosion?

- Swelling controls erosion?
- Prediction: Erosion increases linearly with test length
 - Does not seem to hold so simply, but results still pending...
- Radial inward swelling into the channel: high curvature, low density bentonite

 Swelling rates from axial are at least an order of magnitude too high to explain erosion

Summary

- Piping erosion in 1:6 buffer tests at 0.1 l/min inflow is
 0.2 ± 0.1 g/l
- Erosion is constant in time and not sensitive to pellet gap properties and inflow salinity
- Hypothesis: swelling control erosion
- Outlook:
 - Dependence on channel (test) length
 - Comparing test methods between B+Tech/Posiva and SKB/Clay Tech
 - Constitutive models, <u>radial inward swelling</u>:
 - Narrow enough channel, swelling almost stops?

Erosion as a function of time

- Average the data in time slots
- Apparently constant erosion in time and between tests

•

