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SUMMARY 

The sorption of the actinides Am(III), Th(IV), Np(V), Pa(V), U(VI) and 

Pu has been studied as a function of pH (2-12) for two nuclide concen-
-7 -9 

trations (10 -10 M) (only one for Pa and U) in the systems Al2o3 -

0.01 M NaCl04 and Si02 - 0.01 M Nac104 • Distribution coefficients have 

been determined by a batch technique after various contact times (6h -

6w) at constant temperature (25 °c) in systems equilibrated with air. 

The observed sorption behaviour indicates a predominantly physical 

adsorption mechanism, where pH of the aqueous phase is the principal 

chemical parameter of influence. The sorption is highly related to the 

degree of hydrolysis, with a maximum in the pH-region where neutral 

species dominate and with a reduction of the sorption under conditions 

when anionic species (hydroxides or carbonates) would exist in solution 

This is particularly the case for U(VI) at pH above 7-8 when anionic 

carbonate complexes would be formed. Plutonium is predominantly tetra

valent under the present conditions, as indicated by the sorption 

behaviour. 
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1. INTRODUCTION 

The interaction between actinides in environmental waters and exposed 

solid materials is largely dependent on the chemical state of the 

element in question(!)- Of particular importance are 

o redox conditions; various oxidation states are possible in the 

environmental pH-range: Th(IV), Pa(V), U(IV)-U(V)-U(VI), Np(IV)

Np(V), Pu(III)-Pu(IV)-Pu(V), Am(III), Cm(III) (1_), 

o complexation, especially with hydroxide (hydrolysis) and carbonat, 

Much of the sometimes contradictory experimental observations concern

ing the sorption and distribution of actinides in geologic systems can 

probably be related to poor characterization and control of important 

chemical parameters such as 

o pH, 

o Eh (redox potential), 

o concentration of complexing anions (including carbonate from the 

water-air exchange), 

o presence of solid agents with non-characterized chemisorbing 

properties or considerable exchange capacities (pH-dependent). 

The purpose of the present study is to get information on the sorption 

behaviour of actinides under well-defined conditions, using actinides 

in single oxidation states (Am(III), Th(IV), Np(V), U(VI)) as referenc, 

systems. Hereby it is possible to illustrate the importance of charac

terizing the redox conditions of e.g. a potential geologic repository 

site, as well as the effect of changes in Eh or pH on the retention of 

specific actinides. Some preliminar results from this study have pre

viously been presented (1_). 

2. ACTINIDE REDOX CHEMISTRY AND HYDROLYSIS 

2.1. Oxidation states 

The actinides (here denoted by An) exhibit multiple oxidation states 

(from 3 to 7) in the early part of the series (Th, Pa, U, Np, Pu, Am), 
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but beyond plutonium (Am, Cm, etc.) the lower oxidation states are 

predominant (_~,!±_). 

Thorium exists only as Th(IV) in aqueous solutions. 

For protactinium the most stable oxidation state is Pa(V) in the pre

sence of air, although Pa(IV) can exist in aqueous solutions under 

highly reducing conditions. 

For uranium, U(VI) will dominate entirely in aerated solutions, al

though both U(IV), and possibly also U(V) would exist under reducing 

conditions. The lowest oxidation state, U(III), is slowly oxidized by 

water with the evolution of hydrogen. 

For neptunium and plutonium all the oxidation states III, IV, V and VI 

can exist in aqueous solutions, although Np(III) is easily oxidized. 

Under oxic conditions Np(V) would dominate entirely, while both Pu(IV) 

and Pu(V) could exist, as well as Pu(III) (at low pH). The distributior 

between Pu(IV) and Pu(V) would largely be affected by the carbonate 

concentration. 

Americium is most stable as Am(III), although the easily reduced Am(VI) 

and Am(V) also can exist in aqueous systems, as well as Am(IV) in the 

presence of high concentrations of complexing agents. Only Am(III) 

would be expected in aerated waters in the absence of other oxidants 

than oxygen from the air. 

Curium would largely exist as Cm(III). 

Thus, in aqueous solutions equilibrated with air (Eh~0.8-0.06 pH) and 

in the pH-range of possible environmental interest (3-4 to 11-12) the 

following oxidation states would be expected to dominate entirely 

(.!_,!±_-1): 

An(III):Am 

An(IV) :Th 

An(V) :Np,Pa 

An(VI) :U 

For plutonium, at least in the intermediate pH-range 5-6 to 8-9 in the 

absence of any carbonate other than from the carbon dioxide in the 
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air, the expected dominating oxidation state would be Pu(IV), possibly 

with some minor contribution of Pu(V) at high pH. 

2.2. Hydrolysis and speciation 

The actinides are generally forming strong complexes with oxygen con

taining ligands, and the aqueous chemistry is dominated by hydrolysis 

reactions in the environmental pH-range, as well as by carbonate com

plexation for species in the penta- and hexavalent state, Table 1. 

Table 1 Hydrolysis and carbonate complex formation constants (log K1) 

for the actinides (An) (25°c, I= 0) (I,i). 

An(III)L Pu 

Am 

An(IV)L Th 

Pa 

u 
Np 

Pu 

Pa 

u 
Np 

Pu 

u 
Np 

Pu 

a Same as for Am assumed 
b Same as for U assumed 

c Ref. 7 

a 

6.5 

10.8 

14.8c 

13.4 

12.5 

13.5 

9.5c 

(4) 

5.1 

4.3 

8.2 

8.9 

8.4 

L = CO 2-
3 

a 

6 

(5) 

5.9 
b 

10. 1 
b 

(9) 
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The elements exhibit similar behaviour when they are in the same oxida 

tion state. The differences in complex formation constants for in

organic complexes of environmental interest between the actinides 

uranium, neptunium, plutonium and americium in the same oxidation 

state are, for the higher complexes, often within the uncertainty of 

the data (~_). Thorium forms significantly weaker hydroxide complexes 

than the other tetravalent actinides (size effect). Protactinium dif

fers from the other actinides both in the tetra- and pentavalent statei 

Pa{V) is more similar to An(IV) than to An(V), in terms of hydrolysis 

behaviour. 

The actinide speciation in aerated solutions are given in Fig. 1. 

Evidently hydrolysis would become significant at pH above 6 for americ· 

ium(III), pH 1 for thorium(IV), pH 7-8 for neptunium(V) and pH 4-5 for 

uranium(VI). Carbonate complexes would dominate in aerated solutions 

at pH above 8 for americium(III), pH 8 for neptunium(V) and pH 5-6 for 

uranium(VI). The speciation in aqueous systems with variation of Eh, 

pH and P(C02) is discussed elsewhere (!,i). 

1003+ 103 3-
1 

-....._ 
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' 
_, 

1 ...... 10 
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"" - -2.f' C')-

iJ ~ 10 !. 
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-if- -3 
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-3 1102+ 10,+ 120+ 130 102- -4 
10 Am 10 

5 10 
pH 

Figure 1 Speciation and distribution coefficients for americium(III), 

thorium(IV), neptunium(V) and uranium(VI). Distribution data 

as in Fig. 2-5 (Al2o3 ; Initial concentration: SII (SI for 

U)(cf. Table 2); 0.01 M NaCl04).Relative concentration (Crel) 

calculated from data in ref. !• (Each concentration curve 
n n identified by xyz , corresponding to An (OH) (C03) ). 
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Figure 1 Speciation and distribution coefficients for americium(III), 

Thorium(IV), neptunium(V) and uranium(VI)(Cont.) 
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3. EXPERIMENTAL 

3.1. Radionuclides 

Radionuclides according to Table 2 where used in this study. The sorp

tion studies were performed at two different nuclide concentrations 

for those of the elements where long-lived as well as short-lived 

isotopes were available. All nuclides were stored in stock solutions 

of 1-2 M HCl. 

Table 2 Radionuclides used in the distribution experiments. 

Nuclide Initial concentrationa 

SI, Mx10 7 SII, Mxl0 9 

232Th+234Th 3.0 2.5 

233Pa 0.004 
2330 2. 1 

235Np+237Np 1. 9 1.9 

237Pu+239Pu 0.6 0.6 

241Am 2.9 2.3 

aConcentration in the solution at the start; the concentration in the 
-5 233 

stock solutions were about 10 M, except for Pa. 

The short-lived isotopes 235Np and 237Pu were obtained from Harwell, 
234 233 - 238 237 

UK, and Th and Pa recovered from U and Np, respectively, 

by the use of a sorption procedure(~). 

The concentrations of 233u were measured by liquid scintillation tech

nique (alpha-activity), while all the other nuclide concentrations 

were determined from measurements of the gamma-activity. 

3.2. Distribution measurements 

The distribution coefficient (Kd, mol/kg solid per mol/m3 solution) 

was measured by a batch technique (2_,..!.Q_) under the conditions given in 

Table 3. The thoroughly sieved and washed solid sorbent and the 
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aqueous phase were contacted, and the active stock solution (typically 

0.1 ml per batch of 20 ml) was added. The distribution coefficients 

were, after an initial pH-adjustment (with NaOH), determined as a 

function of contact time. No furtherpH-adjustmentswere made. Totally 

8-12 experiments at various pH but otherwise identical conditions were 

run simultaneously for each system. The solid and aqueous phases were 

separated by centrifugation (27000 g for 0.5 h) and samples from the 

water phases were taken. The distribution coefficients were calculated 

from 

(1) 

where C = initial element concentration in solution (mol/1) 
0 

C = element concentration after certain contact time (mol/1) 

m = mass of sorbent (kg) 

V = volume of the water phase (m3) 

No corrections were made for sorption on the vessel walls (made of 

polypropylene). This should not be required, when considering that the 

surface areas of the exposed fine-grained solids were several orders of 

magnitude larger than the surface area of the vessel. 

All experiments were performed in aerated systems. 

Table 3 Conditions for the distribution measurements. 

Solid sorbents: 

Solutions: 

Radionuclides: 

Experimental conditions: 

Cryst. Al 2o3 and Si02 ; grain size 

0.090-0.125 mm 

0.1 and 0.01 M NaCl04 ; variation 

of pH (2-12) 

See Table 2 

Temperature: 25+1 °c 

Solid/liquid: 0.20 g/20.0 ml 

Contact time: 6h, ld, lw, 4 or 6w 
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4. RESULTS AND DISCUSSIONS 

The measured distribution coefficients (Kd) vs pH for Am(III), Th(IV), 

Np(V), U(VI), Pa(V) and Pu are given in Fig. 2-7. The curves corresponc 

roughly to a contact time of one week. 

Generally, the Kd vs pH-curves exhibit three separate stages: 

o increasing Kd with increasing pH; from very low values in the low 

pH-region to a high level within a fairly narrow pH-range, e.g. 

from 0.005 to 1.9 (corresponding to 5% and 95% sorption, respec

tively) within three pH-units for Am(III), Th(IV) and Pu; 

o high and fairly constant Kd in the intermediate pH-region, partic· 

ularly for Am(III), Th(IV), Pa(V) and Pu; 

o slightly decreasing Kd (Am(III), Th(IV), Pa(V), Pu) or a more 

pronounced decreasing Kd (U(VI)) with increasing pH in the high 

pH-region 

Only the Kd-increasing stage is observed for Np{V) within the pH-range 

of the present study (pH<l2). 

10 

1 

-• 0 

.~~ 
Am 

~r-. - • • :~ 

0.01M NaCK\ / 0 e i C 
/ 

I 
I 

I 
I 

/ 
/ ;/ 

I 
D 

5 

C 
0 0 

a 
10 

pH 

Figure 2 Distribution coefficients for americium(III). 

O6h, e27h, Olw, ■6w 

a. SI, b.-d. SII. 
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Figure 2 Distribution coefficients for americium(III) (Cont.). 
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Figure 3 Distribution coefficients for thorium(IV). 
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Figure 5 Distribution coefficients for uranium(VI) (Cont.). 
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Figure 6 Distribution coefficients for protactinium(V). 
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Distribution coefficients for plutonium. 

O6h, e27h, Olw, ■ 6w. 

a. SI, b. S11. 

Obviously, the degree of hydrolysis, determined by pH of the system, 

has a large influence on the distribution between the solid and aqueoui 

phases. The increase in sorption with increasing pH seems to reflect 

the progressive hydrolysis, as illustrated in Fig. 1, and the sorption 

maximum roughly corresponds to the pH-range where neutral species 

would exist. This is particularly the case for the Th(IV)-systems, 

where no formation of anionic hydroxy species or carbonates would be 

expected (~_,.Z). 
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The significant decrease in distribution with increasing pH observed 

for Am(III) and Pu, and the pronounced decrease observed for U(VI) 

could reflect the formation of anionic species (carbonates and hydr

oxides). The non-existence of a similar behaviour in the Np(V)-system 

either indicates a sorption behaviour in this system different from 

the behaviour of U(VI), or more likely errors in the calculated specia

tion of Fig. 1 (to high carbonate complex formation constants), as 

previously pointed out(_~). 

The general sorption behaviour in the Pu-system strongly indicates 

that plutonium is predominantly tetravalent under the present condi

tions (aerated solutions without excess carbonate). Possibly a minor 

fraction could be either Pu(III) (at pH below 5) or Pu(V) (at pH below 

5-6 or above 8-9), considering the general sorption behaviour of 

Am(III), Th(IV)", and Np(V), and the similarity in chemical behaviour 

of different actinides in the same oxidation state. The predominance 

of Pu(IV) in the intermediate pH-range with some possible contribu

tions of Pu(III) and Pu(V) is in good agreement with calculated 

speciation (1_,_§). 

The hydrolysis dependence of the sorption is further illustrated in 

Fig. 8, showing pH corresponding to 10% and 50% sorption vs the first 

hydrolysis constant (log K1). Here, the assigned log Kd-value might be 

too high in the plutonium system (Pu(IV) assumed), considering the 

possible existence of a minor fraction of less hydrolyzed Pu(III) or 

Pu(V). Considerably lower pH-values for the two selected sorption 

levels would be expected for Np(V) and U(VI) in the absence of carbon

ate (carbon dioxide-free atmosphere). 

The differences in observed distribution coefficients between the two 

nuclide concentrations (cf. Table 2) are minor. Slightly higher values 

are obtained in the high-concentration systems (SI) for thorium and 

plutonium. However, these systems would be very close to saturation. 

The solubility product of An(OH) 4 (s)-An02(s) would be exceeded in the 

absence of any sorbing surfaces (1_). Slightly higher distribution 

coefficients were observed in the low-concentration systems (SII) for 

neptunium. Similar observations have previously been made for uranium 
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5 

5 

15 

10 
log K, 

Figure 8 Hydrolysis dependence of the distribution. 

Distribution data from Fig. 2-5. 

0 50% sorption (Kd = 0 .1 m3 /kg). 

e10% sorption (Kd = 0.01 m3/kg). 

There is generally a significant increase of the sorption with the 

contact time, (e.g. from 6h to ld, lw and to 4-6w) in the systems 

where carbonate complexes would not dominate. This can not solely be 

attributed to the delay due to diffusion into microfissures and crystal 

lite boundaries in the solid grains (radii around 50 µm) but rather to 

slow kinetics in the formation of sorbing higher hydrolysis products 

or colloidal aggregates. An increased ionic strength appears merely to 

speed up these processes(!_!_). 

In general, three basic kinds of sorption can be distinguished (Q_): 

Physical adsorption processes are due to non-specific forces of attrac

tion between the sorbent and the solute. This type of sorption results 

in the binding of the solute to solid surfaces in several consecutive 

layers. This would be a reversible, fairly rapid and largely concentra

tion independent process. 



16 

Electrostatic adsorption processes (ion exchange) are due to the actior 

of attractive coulomb forces between charged particles in solution and 

in the solid. This is often a reversible, fairly rapid and highly 

concentration dependent process. 

The action of chemical forces between a solute and a sorbent would 

lead to chemisorption processes, e.g. when anions in the solid lattice 

could form strong complexes with the solute. This would be a highly 

element specific, partly irreversible, fairly slow and concentration 

dependent process. 

All three of these basic sorption mechanisms can be observed in the 

interactions of actinides with geologic materials under environmental 

conditions (_!__). However, the sorption mechanism can largely be consid

ered as a physical adsorption process, when 

o hydrolyzed species or other complexes dominate in the aqueous 

phase (at pH above 5-6 for Am(III), 3-4 for Th(IV), 7-8 for Np(V), 

4-5 for U(VI), 2-3 for Pa(V) and 3-4 for Pu in aerated systems), 

o no chemisorbing agents are present. 

The properties of the solid in terms of exchange capacities have only 

a minor influence on the sorption behaviour under these conditions. 

(Cf. examples given in ref . ..!_ and 1_: the distribution coefficient for 

Am(III) in bentonite-systems (cation exchange capacity 750-800 meq/kg) 

and Al 2o3-systems (cation exchange capacity< 1 meq/kg) are very simi

lar at pH 8.5). 

5. CONCLUSIONS 

The observed actinide sorption behaviour in the present experiments 

indicate a predominantly physical adsorption mechanism. The major 

chemical parameters that would have a significant influence on the 

actinide distribution between a solid and aqueous phase are 

o the redox conditions (determining the oxidation state), 

o pH (determining the degree of hydrolysis), 

o presence of complexing agents (e.g. carbonate). 
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The sorption of cationic or neutral hydrolyzed actinide species would 

be pronounced on exposed solid phases, even when the exchange capacity 

of these solids are low. However, the formation of anionic species 

(hydroxides, carbonates) would reduce the sorption. 

Plutonium is largely tetravalent in aerated aqueous systems of environ

mental pH in the absence of other complexing agents than the hydroxide 

as well as the carbonate from the carbon dioxide-water equilibrium. 

Further studies of actinide sorption on low-capacity solids in the 

presence of high concentrations of complexing agents are in progress. 

Results from these studies, as well as discussions on sorption mecha

nisms and the various sorption models suggested in the literature will 

be presented in a subsequent report. 
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