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SUMMARY 

Temperature distribution in and around the final 
storage has been calculated for BWR-fuel. 

The results are also applicable to PWR-fuel if 
the amount of fuel is adjusted so that the power 
per canister is the same. 

The calculations are made with the conservative 
assumption of the coefficient of thermal conduc
tivity of 0.75 W/(rn °C) in the bentonite and 
3.0 W/(m °C) in the rock. 
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The amount of BWR fuel is about 1.4 ton per canister. 
The canisters are deposited 40 years after withdrawal 
from the reactor. 

A number of different layouts in single and two
level storages have been studied. 

Finally, a two-level storage has been chosen 
as a basis for further project work. 

The maximum temperature increase of 59.2°C at 
the surface of the canister is reached about 
30 years after the time of deposition. However, 
in this two-level storage there will be also 
a second temperature peak of 58.7°C about 600 
years after the deposition. The highest temperature 
increase in the rock, 56.8°C, occurs about 600 
years after the deposition. 

At the same time as the temperature continues 
to sink, there is a levelling out of the local 
temperature differences in the storage. These 
differences are negligible after about 1 000 
years. 

After 100 000 years the temperature in the storage 
is only a few degrees centigrade above the initial 
rock temperature. 

The heat from the storage reaches the ground 
surface about 200 years after the deposition. 
the maximum heat flow, 0.28 W/m 2 , occurs about 
2 000 years after deposition and is considered 
insignificant compared for example with solar 
energy flow of about 100 W/m 2 • 
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1. INTRODUCTION 

A number of different storage layouts for the 
unreprocessed spent fuel have been studied since 
the start of the investigation of the storage 
problem. Temperature calculations for a design 
applicable 1978 are presented in (ref. 1) 

As later calculations of residual power have 
resulted in higher values, a new calculation 
of the temperature distribution proved to be 
necessary. In what follows this initial design 
may be referred to as input alternativ (also 
Alt. 1A). 

Due to the influence of different parameters 
such as the spacing of canisters and tunnels, 
thermal properties of the rock etc. a study of 
the variation of these parameters has been per
formed. 

For locations where the horizontal extension 
available is limited layout in two planes has 
been studied. 

Costs of the storage are influenced favourably 
if the thickness of the copper jacket can be 
decreased. The influence of this temperature 
is also analysed. 

Temperature computations are of course closely 
connected with the project work on the whole. 
The result is that the initial design in one 
plane has been successively replaced by a two
plane storage - mainly due to the limited space 
available in some of,the sites studied for the 
continuated project work. 

As the initial temperature in the bed-rock is 
site-dependent the calculations are made for 
the initial temperature zero. 
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2. 

2. 1 

PREMISES 

Principles of storage 

The arrangement of the canisters containing the 
spent fuel is shown in principle in Figure 1. 
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The final repository consists of a system of 
parallel tunnels located about 500 rn below the 
ground level. The spent fuel is contained in 
canisters of copper with wall thickness of 100 mm. 
The canisters are deposited in the storage 40 
years after removal from the reactor. 

The canisters are surrounded by a buffer material 
composed of highly compacted bentonite. 



2.2 Different types of layouts of storage 

The different configurations of storages with 
essential characteristics are listed in Table I, 
Appendix 1. 

The initial power is proportional to the amount 
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of spent fuel per canister. At 1.41 tons/canister 
this power is 808 w, increased to 850 Win the 
final design. 

2.3 Loading conditions 

Calculations of residual power for spent fuel 
are presented in (ref. 2) and shown in Appendix 2. 

The power is assumed to vary in a linear logarith
mic relationsship between specified points of 
time shown in Appendix 1. 

However, for the three-dimensional (3D) calcula
tions, in the first times of deposition the expo
nential power time relationship, calculated from 
three points of time is used. 

For initial power 850 W (40 years after removal 
from the reactor) the following relationships 
have been obtained. 

0-10-20 years E = 509e- 0 · 02525 t + 341 

(0-20)-60 years E = 601e-o.o 2o475 t + 249 

In the two-plane cases, the upper plane is assumed 
to be loaded 15 years later than the lower plane. 
2.4 Material properties 

In addition to the properties stated for the 
rock in Table I, the following values have been 
used for the other materials concerned. 

At the beginning of deposition, 0-150 years, 
bentonite is assumed to be in dry condition with 
a thermal conductivity of 0.75 W/(m °C). There
after bentonite is assumed to be fully saturated 
with water, increasing the thermal conductivity 
to 1.5 W/(m °C). 

The specific heat of bentonite is assumed to 
be 2 • 2 MJ / ( m 3 ° C) . 

The spent fuel is simulated with conservative 
material properties: 

Conductivity 3 W/(m °C) 
Specific heat 1.5 MJ/(rn 3 °C). 
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3. CALCULATION METHODS 

Due to economic reasons, the main part of the 
calculations had to be made by means of a simpli
fied method, in what follows referred to as method 1. 

During the initial period with high local gradients 
this method will yield results which are conserva
tive. Therefore a three-dimensional (3D) calcula
tion is performed for this initial period, up 
to 60 years for the input case. This method 
is called method 2. 

3.1 Method 1 

The calculation is executed in two stages with 
a finite difference code (ref. 3). At first 
a mean- or macro-temperature distribution is 
computed for the central region of storage, as 
shown in Figure 2. In this region the temperature 
distribution - at least the macro - is practically 
constant in the horizontal direction and a one
dimensinal model as shown in Figure 3A for one
plane and in Figure 3B for two-plane case is 
applied. 
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To verify the assumption of constant temperature 
distribution in the central region, a two-dimen
sional model according to Figure 4 has been used 
at an earlier stage of the calculations. 
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1 1 

With the output from these rough models as input 
a new calculation is made with a finer mesh, 
micromodel 1, according to Figure 5, corresponding 
to half a tunnel spacing as a ring model with 
large radius. 
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Finally - as a third stage - the local tempera
ture distribution nearest the canister is calcu
lated analytically as stationary temperature 
for long cylinders according to Figure 6, using 
the formula 
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Q = power at the time, W 

~Tmean 

1 = length of the canister, m 
d = outer diameter of the cylinder 
a¥= inner diameter of the cylinder 
A 1 = thermal conductivity, W/(m °C) 

1 2 

( 3. 1 ) 

As regards the boundary conditions, the macromodel 
is assumed to be insulated at the outer surfaces, 
except at the ground level where zero temperture 
is held constant with a convective heat transfer 
coefficient of 10 W/(m 2 • °C) between atmosphere 
and rock. 
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In micromodel 1 the temperatures from macromodel 
are input as constant boundary temperatures. 

3.2 Method 2 

This is a three-dimensional analysis using a 
model as shown in Figure 7. Due to code limita
tions only elements in the shape of parallelepi
peds can be used. 
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For comparison, an analysis for a single canister 
infinetely apart from other canisters, has been 
performed with an axisymmetrical model. 
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4. RESULTS 

4. 1 Method 1 
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Temperature distribution at the centre of storage 
is shown in Figure 8A for one-plane design and 
in Figures 8B and 8C for two-plane design with 
100 m and 250 m resp. between the planes. Figure 8B 
indicates that in the case 14B the maximum macro
temperature is about 7°C lower than in the case 
14A due to higher thermal conductivity. 
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Figures 9A-10B shows isotherms for the input 
and output cases 200 and 960 years resp. after 
deposition. 
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Temperature variation as function of time is 
shown in Figures 11A-11F. For the Alt. 1A (input 
case) the maximum temperature on the canister 
surface 64°C is reached in about 20 years after 
deposition. For Alt. 14A (output case) Figure 11F 
the corresponding temperature in the upper plane 
is 65.3°C. Here, 1.3°C is due to influence from 
the lower plane about 35 years after deposition. 
In this case, however, a second peak of tempera
ture, 58.7°C, occurs about 600 years after deposi
tion. 
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Temperature distribution between tunnels is shown 
in Figure 12A. 

4.2 Method 2 

Variation of temperature as function of time 
is shown in Figure 11A for the input case and 
in Figure 11F for the output case. 

In the one-plane case the maximum temperature 
is 62°C after about 42 years after deposition. 
This value is thus only 2°C lower than the value 
obtained by the approximate method 1. 

In the two-plane case, Figure 11F, the first 
maximum value is 59.2°. In this case method 1 
yields about 6°C higher temperature. 
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Temperature distribution adjacent to the canister 
is shown in Figure 12 B. It may be observed 
that it is almost axisymmetrical to a distance 
corresponding to half the spacing of the canisters. 
The difference between the maximum and minimum 
values is only about 2°c (of 40°C). 
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C 

The results of the different cases are summarized 
in Figures 13 and 14. These figures can be used 
to estimate temperatures for configurations other 
than those computed here, such as for the output 
case, for which 3D-calculations have not been 
made. 
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From Figure 14 the temperature 55°C is obtained 
for tunnel spacing 33.33 m, canister spacing 
6 m and initial power 808 W (1.41 tons). For 
the output case with 850 W this corresponds to 

850 
X 55 = 57.9°C 808 
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To this should be added 1.3°C which is the influence 
from the lower plane after 35 years. 

The maximum temperature at the first peak is 
thus 59.2°c. 

In addition there is a slight difference in the 
dimensions of the canister. Thus the outer diameter 
of the canister is now 0.80 instead of 0.77 for 
the initial case. This means a decrease in the 
local temperature of about 6 % near the canister. 
At the same time, the length of the canister 
is decreased from 4 .. 7 m to 4.5 m, which corresponds 
to an increase of about 4 %. These effects may 
be assumed approximately to cancel out each other. 

4.3 A single canister 

Temperature distribution for a single canister 
of type 1A (input case) is shown in Figures 15-16. 
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The maximum temperature, 42.6°C occures about 
two years after deposition. For an infinetely 
long canister the corresponding temperature is 
52.6°C. 
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Thus for improved accuracy in method 1 a correction 
factor of 

42.6 
52. 6~ = 0.81 

could be introduced in the formula (3.1). 

4.4 Heat flow at ground level 

Heat flow at ground surface is shown in Figure 17 
for the two reference cases. The heat flow reaches 
the ground level about 200 years after the deposi
tion. The maximum value occours after about 2000 
years and is 0.21 and 0.28 W/m 2 resp. 

These are very low values as compared with for 
example solar energy heat fow of about 100 W/m 2 

(ref. 4). 
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4.5 Influence of gaps 

No account has been taken of gaps between bentonite, 
canister and rock. These gaps will be filled 
with powder of bentonite, which can have a lower 
thermal conductivity than the bentonite itself. 
Conservatevely it is assumed that the thermal 
conductivity in the gap is 0.3 W/(m 0 °C). 
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The increase of temperature in the gap is calculated 
from 

L\T = g 

where 

Q 
s 
1 
d 

= power in W 
= thickness of the gap in m 
= length of the canister= 4.5 m 
= diameter of the canister in m 

A 
Agap 
bent 

= thermal conducivity in the gap= 0.3 W/(m °C) 
= thermal conductivity of the bentonite 

= 0.75 W/(m °C) 

At time 15 years after deposition with Q = 690 
is obtained 

at the canister ---------------
with 
s = 0.030 m and 
d = 0.800 m 

liTg = 4.1°C 

at the rock -----------
with 
s = 0.050 m and 
d = 1 . 500 m 

6Tg = 3.3°C 

Thus the total influence from the gaps is about 
7.5°C. 

w 
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'fABLE I CHARACTERISTICS OF STORAGES 

One-plane design 

2- and 3-dimensional calculations 

Alt. Distance Diameter Spacing 
between of of 
tunnel- canister canister 
planes m m m 

2- och 3-dimensional calculations 

1A 0.77 6 
lB 1 0.826 7 
·rn2 0.826 7.5 
1B3 0.826 8.5 
1B4 0.826 8.5 
1B5 0.826 8.5 
2 0.77 6 
3 0.77 6 ,, 
:t 0.77 5 ,. 

.) 0.77 7 
6 0.77 6 
·7 0.77 6 i 

n 
() 0.77 8 
9 (A) 0.77 5 

0 (A) 0.77 4.3 
J l (C) 0.79~) 6 
12 0.57 6 
•; ') 
J .,) 0.798 5.5 

1) Copper thickness 100 mm 

]:~!!~nsional_calculations_only 

180 
1C 

0.826 
0.798 

2. Two-plane design 

7 
6 

2:dim~nsional_calculations_only 

1\1 t. Distance Diameter Spacing 
between of of 
tunnel- canister canister 
planes m m m 

HA 100 0.80 6 
14B 100 0.80 6 
14C 100 0.77 6 
'15 250 0.77 6 

VRM 038-014a TT/ENZ 1983-06-10 

Spacing 
of 
tunnels 

25 
50 
50 
50 
40 
60 
25 
25 
25 
25 
20 
35 
25 
35 
50 
50 
35 
50 

30 
30 

m 

Spacing 
of 
tunnels 

m 

33.33 
33.33 
25 
25 

Thermal 
conduc-
tivty 
of rock 
W/(m 

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.6 
2.0 
3.0 
3.0 
3.0 
3.0 
2.0 
3.0 
3.0 
3.0 
3.0 
3.0 

3.0 
3.0 

oc) 

Thermal 
conduc-
tivty 
of rock 
W/(m oc) 

3.0 
3.6 
3.0 
3.0 

Appenciix 

Specific Weight of 
heat of spent fuel 
rock 
MJ/(m 3 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
1. 8 
2.5 
2.0 
2.0 
2.0 
2.0 
2.5 
2.0 
2.0 
2.0 
2.0 
2.0 

2.0 
2.0 

tons/ 
°C)canister 

1. 41 
1. 93 
1. 93 
1. 93 
1. 93 
1. 93 
1. 41 
1. 41 
1. 41 
1. 41 
1. 41 
1. 41 
1. 41 
1. 41 
1. 41 
1. 66 
1.41 
1. 66 

1. 93 
1. 66 

Specific Initial 
heat of power 
rock W/ 
MJ/(m 3 °C)canister 

2.0 850 
2.25 850 
2.0 808 
2.0 808 
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