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SUMMARY 

The sorption of americium(III), neptunium(V) and plutonium on 
geologic media under oxic conditions has been measured by a batch 
technique. The aqueous phase was a synthetic groundwater or 
4M NaCl solution. The solid phase was a pure mineral, representa­
tive of igneous rocks, or granite. Altogether 40 different 
minerals and rocks were used. The effects of pH and the ionic 
strength of the aqueous phase as well as of the cation exchange 
capacity and the surface/mass ratio of the sol id sorbent are 
discussed. Empirical equations giving the distribution coefficient 
as a function of pH in the environmental pH-range 7-9 are suggested. 
Some observations and conclusions concerning sorption mechanisms 
are given. 
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1. INTRODUCTION 

The actinides with their daughter products (Th, Pa, U, Np, Pu, Am, 

Cm) will largely dominate the biological hazards from spent 

nuclear fuel already some hundred years after the discharge from 

the reactor and onwards. Thus, it is of prime importance that the 

chemical behaviour of the actinides in environmental systems is 
well understood. This would be the necessary basis for predictions 

of actinide reactions and mobilities in nature, e.g. in connection 
with accidental releases from the nuclear fuel cycle or from an 

underground repository for spent fuel or high-level waste. 

In the present investigation the sorption of Am, Np and Pu on 

geologic material has been studied. This report is a compilation 

of data from three different groups and time periods. 
1. Dep. of Nuclear Chemistry, Chalmers University of Technology, 

Sweden; 1977-78. 
(B. Allard, H. Kipatsi, J. Rydberg, B. Torstenfelt). 

Most results from this period have previously been reported 

(_!_-_1_). 

2. Transuranium Research Lab., Oak Ridge Nat. Lab., USA; 1978-79. 
(B. Allard, G.W. Beall, T. Krajewski). 

All data from this period has previously been presented 

(£-Q). 
3. Dep. of Nuclear Chemistry, Chalmers University of Technology, 

Sweden; 1980-82. 
(B. Allard, K. Andersson, U. Olofsson, B. Torstenfelt). 

Some data from this period has previously been reported 

(22-~) although most results will be presented elsewhere 

( 30) . 

Some qualitative and semi-quantitative observations on actinide 

behaviour in geochemical systems are briefly summarized in this 

report. Detailed discussions of sorption mechanisms etc., as well 

as comparisons with literature data, will appear elsewhere (30). 
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2. THE GROUNDWATER - ROCK SYSTEM 

Spent nuclear fuel or high-level reprocessing waste will be stored 
in granitic bedrock at great depth in the present Swedish concept 
for radioactive waste deposition. The studies of actinide behaviour 
under the conditions expected in a granitic repository have been 
concentrated on the following approach: 
o Description of the geochemistry of a deep repository in 

granite (mineralogy of the bedrock and fracture filling 
materials, groundwater chemistry). 

o Description of actinide chemistry in groundwater systems. 
o Description of actinide sorption behaviour in geologic 

systems. 

2 .1. Major minerals of igneous rocks 

Igneous rocks like granite are composed of a small number of major 
constituents like quartz, feldspars (orthoclase, plagioclase), 
micas (biotite), amphiboles, pyroxenes and olivine, as illustrated 
in Fig. 1. Moreover, there are some accessory minerals, e.g. 
fluorite, calcite, apatite, magnetite, etc. that would have some 
influence on the properties of water exposed surfaces and on the 
composition of the groundwater (see below). 

2.2. Composition of granitic groundwaters 

The complex relations between solid geologic media (major and 
accessory components, weathering products), species in solution 
and the biosphere and atmosphere are schematically illustrated in 
Fig. 2. 

The most important chemical system in the aqueous phase appears to 
be the H2o-co2-system, which largely determines pH (through the 
protolysis of H2co3). In most groundwaters, the total carbonate 
concentration would determine the maximum calcium concentration 
(saturated CaC03(s)-solution). Some interrelations exist between 
the calcium, sodium and magnesium concentrations through ion 
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exchange reactions with weathering products (mostly clay minerals). 
Moreover, the calcium concentration would limit the total fluoride 
and phosphate concentrations due to the low solubility of fluorite 

- 2+ + 2+ - 2-and apatite. Thus, the concentrations of HC03 -Ca -Na -Mg -F -HP04 
as well as pH would to some extent be interdependent and related 
to the presence of weathering products and some accessory minerals. 

Another interdependent chemical system would be Fe2+-02 with Eh 
and pH, which would be related to the presence of iron containing 
minerals. (Further aspects on groundwater equilibria are given 
e.g. in ref. 11.) . 

Observed concentration ranges of major species in deep granitic 
groundwaters are given in Table 1. (32, 33) Moreover, saline 

(-+ -2+ -) waters with total salt concentrations Na -Ca -Cl of up to 10 g/1 
have been encountered. 
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Figure 2 The groundwater - rock system(£) 

2.3. Fracture filling minerals 

The mineralogical composition of fracture filling products would 
be of importance for the retention of radionuclides in the ground­
water, since the fracture minerals and not the bulk rock itself 
would primarily be exposed to the groundwater. Three categories of 
fracture minerals will be expected (34). 
o Weathering and alteration products of e.g. micas, feldspars, 

amphiboles, etc. (clay minerals). 
o Precipitates and crys ta 11 i zat ion products from aqueous 

solutions, not necessarily formed under hydrothermal conditions 
(e.g. calcite). 

o Metamorphic products. 



Table 1 

Species 

HCO~: 
so4 
Cl 

F 

HPO 2-
4 

5 

Groundwater composition (11, E) 

Concentration in nature a 

mg/1 
Artificial groundwater 

mg/1 

123 

9.6 

70 

SiO~(tot) 
ca2 

30-400 

1-25 

5-50 

0.01-5 

0.01-0.5 

5-30 

10-50 

2-20 

10-100 

1-5 

0.5-20 

12 

18 

4.3 

65 

3.9 

Ml+ 
+ 

Na 
K+ 

Fe2+ 

pH 7.2-8.5 8.2 

a Deep undisturbed non-saline groundwater in granitic rock. 

A list of common fracture minerals in granitic rock is given in 
Table 2 (]i). 

2.4. Selection of minerals and artificial groundwaters for 
sorption studies 

In the selection of minerals for the experimental studies the 
general principle has been to include most of the common minerals 
in igneous rocks that for various reasons might be expected to 
have some significant influence of the actinide sorption behaviour. 
The following groups of minerals are represented: 
o Major rock forming minerals 
o Common accessory minerals 
o Accessory minerals known to contain minor amounts of actinides 

or lanthanides 
o Weathering products of the rock forming minerals 
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Table 2 Fracture minerals in granite (34) 

Mineral Occurrence a 

Calcite A 
Dolomite s, Me 
Gypsum p 

Pyrite A 
Epidote Me, H, s 
Prehn ite Me, H 
Chlorite A 
Kaolin w, H 
Montmorillonite s, H 
I 11 i te W, H 
Quartz A 
Laumontite s, H 
St i l bite s, H 
Analcime s, H 

a A in all geologic environments = 

s = in sedimentary rocks 
Me = in metamorphic rocks 
w = as weathering product 
H = as hydrothermal product 
p = precipitate 

o Common fracture minerals 
o Minerals containing anions that would form strong actinide 

( - 3- 2-) complexes F , P04 , co3 
o Minerals representing all of the six major structure classes 

of the silicates 
A list of the minerals is given in Table 3. 

An artificial groundwater, Table 1, representative of deep non-saline 
granitic groundwater, was used as aqueous phase, as well as 4 M 
NaCl, representing very saline waters or brine. 
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Table 3 Minerals and rocks selected for sorption studies 

Class Mineral a Class Mineral a 

Sulfides Pyrite -Cyclo silicates Beryl 

Oxides, 

Hydroxides 

Halides, 

Sul fates, 

Carbonates, 

Phosphates 

Chalcopyrite 

Galena 

Molybdenite 

Chalcosite 

Magnetite 

Hematite 

Limonite 

Corundum 
Gibbsite 

Fluorite 

Anhydrite 

Calcite 

De 1 omite 

Apatite 

Monazite 

Silicates Olivine 

-Neso silicates Almandine 

Zircon 

Sphene 

-Soro silicates Epidote 

a See e.g. ref. 35. 

-Ino silicates Augite 

Hornblende 

Attapul gite 

-Phyllo silicates Kaolin 

Ha 11 oys ite 

Serpentine 

Montmori 11 on ite 

Muscovite 

Biotite 

Ch l orite 

-Tecto silicates Albite 

Microcline 

Bytownite 

Anorthite 

Quartz 

Igneous rocks Basalt (]_§_) 

Climax Stock 

granite (36) 

Westerly 

granite (]_§_) 

Finnsjon 

granite (34) 
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3. EXPERIMENTAL 

3.1. Preparation arid characterization of the mineral samples 

Pure, crystalline products from natural locations were selected. 

Mineral grains that appeared to be reasonably pure were selected 

frori a coursely ground material and then further ground and 

sieved. Usually the size fraction 0.044-0.063 mm was used in the 

sorption studies. The purity v1as checked by X-ray diffractometry, 

and for some of the minerals also by chemical analysis. Normally, 

the impurities were low (within 5%). Mineralogic compositions of 

the rock samples are given in ref. 34 and 1§_. (Detailed data 

concerning mineral conposition, sources, etc. are available, but 

not included or further discussed in this report). 

For most of the minerals used the surface/mass ratio was determined 

by the ethylene glycol method (lZ_) as well as the BET-method in a 

few cases. (C.f. ref.~). 

The anion and cation exchange capacities ~vere deternined as a 

function of pH by a batch technique (38). (C.f. ref. 43). 

3.2. Sorption studies 

3.2.1. Radionuclides 

Radionuclides used in the distribution measurements are given ir 

Table 4. The short-lived nuclides 235 Np and 237 Pu were obtained 

from Argonne Nat. Lab. and Harwell (in the experiments at Oak 

Ridge and Chalmers, respectively). The long-lived nuclides 237 Np 

and 239Pu were used in sorie of the early measurements, prir12rily 

on montmorillonite and Finnsjon granite. 

3.2.2. Batch-wise distribution measurements 

The crushed and sieved solid material was prewashed with aqueous 

phase for five days. The solid phase was allowed to settle by 

gravity or by light centrifugation (for clay samples) and the 

washing solution was discharged. After a second ideritical wash a 

known amount of aqueous phase was added and the system was allowed 
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to preequilibrate for another five days before an acidic active 
spike solution was added and pH adjusted (with 0.1 or 0.01 M Na0H 
or HCl) to a preselected value. 

The activity remaining in solution (after phase separation by 
centrifugation) was measured, and the distribution coefficient Kd 
(kg/kg)a, calculated according to 

Kd = (c0 -c)V9/cm 

where c0 = initial concentration (M) 
c = measured concentration after a certain contact time (M) 
V = volume of aqueous phase (m3) 
9 = density of aqueous phase (kg/m3) 
m = mass of solid phase (kg) 

The sorption on the walls of the vials was measured and found to 
be negligible in the presence of crushed minerals or rocks, due to 
the very large surface provided by the crushed material in compari­
son with the exposed surface of the vial. 

The composition of the artificial groundwater was not significantly 
altered under the present experimental conditions except in a few 
systems (e.g. quartz, hornblende, anhydrite) (C.f. Fig. 3). 

Experimental conditions etc. are given in Appendix. A detailed 
discussion of the proper choice of experimental parameters and 
conditions is given elsewhere (~). 

Table 4 Radionuclides used in the sorption studies 

Nuclide Half-life 

235Np 396d 
237Np 2 .14x106y 
237Pu 45.4d 
239Pu 4 2.41x10 y 
241Am 433y 

aThe distribution coefficient is denoted by Kd (kg/kg) throughout 
this report. In most of the references the distribution coefficient 
Kd (m3/kg) is used. Thus, Kd = l000(Kd)' assuming that the density 
of the aqueous phase is 1000 kg/m3. 
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4. RESULTS AND DISCUSSION 

Under the present conditions, americium and neptunium would be 
tri- and pentavalent, respectively, while plutonium would be 
predominantly tetravalent (~,IZ). The observed distribution 
coefficients (Kd) for the individual mineral systems (Appendix). 1 

are summarized in Fig. 4 - 14. The effects of pH, cation exchange 
capacity (CEC), surface area and the composition of the aqueous 
phase (groundwater, GW, or 4M NaCl) are briefly discussed separate­
ly below. 

4 .1. Influence of pH on the sorption 

The most important single chemical parameter with influence on the 
sorption of actinides in well-defined oxidation states appears to 
be pH of the aqueous phase. Similar sorption isotherms were 
obtained for the individual actinides in most of the mineral 
systems with some exceptions (see 4.6.). 

For americium (Fig. 4 - 8) Kd generally increases from low values 
at pH below 4 to maximum values at pH 6.5 to 8 and then tend to 
level out or slightly decrease at higher pH. This general behaviour, 
which seems to be relatively little affected by the nature of the 
various minerals, indicates a sorption mechanism that would be 
related to the solution chemistry (hydrolysis) rather than to 
sorbent properties (see 4.5). 

For neptunium (Fig. 9 - 13), similar sorption isotherms were also 
obtained for the various mineral systems, however significantly 
different from the americium systems. Very low Kd-values were 
obtained at pH below 7-7.5 but increasing with pH above this 
level. The number of minerals that deviate from this general 
behaviour is larger than for americium (see 4.6). 

For plutonium (Fig. 14) very high Kd-values were obtained in the 
whole observed pH-range 4-9, however possibly with a slight 
decrease at pH above 7-8. 

The effects of the solution chemistry, determined by pH, on the 
sorption behaviour is further discussed in 4.5. 
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4.2. Influence of the cation exchange capacity on the sorption 

The relation between Kd and CEC is illustrated in Fig. 15 and 16 

for americium and neptunium, respectively (at pH 5 and 8 in GW). 

Both for americium and neptunium Kd is generally increasing with 
CEC at pH 5, especially for the silicate systems. At pH 8 such a 
correlation is less obvious or possibly not significant. 

4.3. Influence of the ionic strength on the sorption 

The relation between Kd in GW and 4M NaCl is illustrated in Fig. 
17 and 18 for americium and neptunium, respectively (at pH 5 and 
8). 

At pH 5 significantly higher Kd-values are obtained in GW than in 
4M NaCl for most of the americium systems. This would be expected 
for a predominantly ion exchange process, as indicated in 4.2. 
However, the Kd-ratio between GW and 4M NaCl is generally below 
10, which is less than expected since the ionic strength ratio is 
ea 500. 

For neptunium the data are too scattered at pH 5 to allow any 
conclusions. 

At pH 8 the differences in observed KO-values between GW and 4M 
NaCl have become much less than at pH 5 for the americium systems. 

For neptunium significantly higher values were obtained in the 4M 
NaCl systems than in GW. 

The difference between americium and neptunium in the dependence 
of the salt concentration is further illustrated in Fig. 19 and 
20, showing Kd vs pH for two minerals with high CEC (biotite and 
montmorillonite). For americium the sorption exhibits a very 
pronounced ionic strength dependence at low pH. The difference 
decreases with increasing pH, and at pH above 7-8 there appears to 
be no significant difference between the sorption curves for the 
two aqueous phases. 
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For neptunium the sorpt ion curves in the 4M NaCl seem to be 
displaced 1-2 pH-units toward lower pH in comparison with the 
GW-systems (see further discussion in 4.5). 

4.4. Influence of the surface area on the sorption 

In Fig. 21 and 22 Kd vs the surface/mass ratio (A) is illustrated 
for americium and neptunium. Possibly a tendency of increasing Kd 
with increasing A can be noticed. However, also CEC is generally 
increasing with A (C.f. Fig. 2 - 9). 

4.5. Influence of chemical speciation on the system 

The pH-dependencies of the relative concentrations of americium 
and neptunium hydroxy and carbonate species (29) as well as of the 
observed distribution coefficients are illustrated in Fig. 23 and 
24. 

In both the americium and neptunium systems the sorption appears 
to increase when hydrolysis becomes significant (at pH above 5-6 
for americium and at pH above 7-8 for neptunium). This observation 
is in qualitative agreement with sorption models based on hydrolysis 
and complex formation described in the literature (e.g. ref. 40). 
Also the maximum in sorption at pH when neutral hydrolysis products 
would dominate has previously been pointed out (e.g. in ref. i1._). 

The slightly decreasing Kd with increasing pH (above pH 8-9) for 
americium could reflect the formation of anionic species such as 
Am(C03) 2- and Am(C0 3)/-. However, a similar decrease is not 
observed for neptunium in the pH-range where the predicted species 

( l-2x Np02 co3)x would dominate. 

The displacement of the sorption curves towards lower pH observed 
for neptunium in the 4M NaCl system is not likely to reflect the 
chloride complexation. However, an increase of the hydrolysis 
constant, when going from groundwater (<O.OlM) to a 4M salt 
solution, leading to a higher degree of hydrolysis at a certain 
pH, can not be excluded. Reliable hydrolysis constants determined 
at various ionic strengths are not available for neptunium(V). 
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4.6. Other factors affecting the sorption 

Deviations from the general pH-dependence of the sorption 
isotherms are obtained for a few mineral systems. These are 
typically high-capacity minerals giving high sorption at pH below 
the level of significant hydrolysis (e.g. americium - montmoril-
1 on ite). 

An enhanced sorption is also observed for minerals containing 
anions that would form sparingly soluble actinide compounds (e.g. 
F- and PO43-), probably due to chemisorption reactions. 

Effects of nuclide concentrations, ionic strength, presence of 
complexing agents in the aqueous phase, temperature and time have 
previously been noticed (e.g 1,1§.,ll,28). The influence of these 
factors on the sorption behaviour is discussed elsewhere and only 
briefly summarized below. 

The variation of the surface charge of the minerals and its effect 
on the sorption has not been studied. 

5. CONCLUSIONS 

5.1. Sorption meachanisms 

The experimental observations on the sorption behaviour of actinides 
on geologic material, both for Am, Np and Pu as presented in this 
report, as well as for Th, Pa and U presented elsewhere (42), can 
qualitatively be summarized as follows: 

o For all systems the sorption is drastically increased when 
hydrolysis starts. Sorption maxima are generally obtained in 
the pH-range where neutral hydroxy complexes would dominate 
in solution. 

o A decrease in sorption at high pH seems to coincide with the 
formation of anionic species (e.g. with OH- or co32-). 
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o In the pH-range where hydrolyzed products dominate in solution 
the sorption is less affected by the cation exchange capacity 
of the solid sorbent than in non-hydrolyzed systems. 

o The sorption is fairly independent of the ionic strength for 
actinides in their lower oxidation states in the pH-range 
where hydrolysis dominates. For unhydrolyzed systems the 
sorption is decreasing with increasing ionic strength. 

o The sorption of hydrolyzed species is slowly increasing with 
time. The time to reach equilibrium is decreasing with 
increasing ionic strength and/or increasing temperature. 

o The formation of colloidal fractions e.g. of clayish materials, 
that would lead to lower apparent distribution coefficients, 
is decreasing with increasing ionic strength. 

o The sorption of actinides in the lower oxidation states (III, 
IV) is fairly independent of the nuclide concentration (for 
total concentrations well below the solubility product of any 
sparingly soluble compound). For the higher oxidation states, 
in cases when polynuclear anionic species can be formed (e.g. 
An(VI )-co3 3-), a drastic reduction of the sorption with 
increasing nuclide concentration (or concentration of e.g. co32-) 
can be obtained. 

o The presence of organic complexes can lead to a reduced 
sorption. 

Also should be pointed out the changes in sorption behaviour that 
would occur when the oxidation state is varied, e.g. from III or 
IV, which could be highly hydrolyzed in the environmental pH-range, 
to V, with a low degree of hydrolysis, or VI that would form 
strong anionic carbonate complexes. 

In general, the sorption of actinides in the environmental pH-range 
can best be considered as a physical adsorption process, caused by 
non-specific forces of attraction between the sorbent and the 
solute. This sorption can result in the binding of the solute in 
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several consecutive layers on the sorbent. This would be a rever­
sible and fairly rapid process, highly pH-dependent but relatively 
independent of the nuclide concentration (in terms of distribution 
coefficients) at low total concentrations as well as of the ionic 
strength. 

However, there are considerable contributions from electrostatic 
interactions (ion exchange) particularly in the low pH-range 
(cationic species, with a lower degree of hydrolysis) and in the 
high pH-range (anionic species). Such processes are dependent on 
both nuclide concentration and ionic strength, as well as pH. 

For certain systems, specific actions of chemical forces between 
solute and solid would lead to chemisorption reactions which are 
selective, concentration dependent and possibly partly irreversible. 

Sorption mechanisms will be further discussed in detail elsewhere 
( 30) . 

5. 2. Distribution functions for actinides in granite 

The presence of "dark" minerals (biotite, amphiboles, pyroxenes) 
as well as weathering products (clay minerals) will largely 
determine the sorptive properties of granitic rocks. The variation 
in distribution coefficients for most of the individual major 
components of the rock are usually within 1-1.5 orders of magni­
tude, which has the consequence that the overall sorptive proper­
ties are fairly insensitive to minor variations in the mineralogic 
composition (c.f. Fig. 4 - 14). 

The presence of fracture minerals in a weathered rock as well as 
of accessory non-silicate minerals would generally enhance the 
sorption. Usually higher distribution coefficients are obtained 
for a natural rock than what can be estimated from the arithmetic 
sum of the contributions from the individual mineral components, 
as calculated using data for pure minerals. 

Based on the observed distribution coefficients (Appendix) and 
considering the composition of igneous rocks with respect to major 
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rock forming minerals and pH in deep groundwaters the following 

empirical distribution functions have been formulated: 

or 

where 

logKd = apH 2 + bpH + c + d 

logKd = apH 2 + bpH + c + f 

f = log (mQ + nD + o) .:_ 0.2 

Here a,b,c,d,m,n and o are constants 

Q = fraction of quartz 

(2a) 

(2b) 

( 3) 

D = fraction of "dark" minerals (biotite, hornblende, 

etc.). 

From (2a) values for an "average" granite (c.f. Fig. 1) would be 

estimated, the constant d indicating the range of observed values. 

In (2b) an effort is made to give a simple estimate of Kd for a 

granite with known composition with respect to the low-sorbing 

quartz and the high-sorbing "dark" minerals. 

Calculated empirical values of the constants in eqn. (2) are given 

in Table 5, and estimated distribution coefficients in Table 6. 

Table 5 Constants in eqn. (2) 

Element a b C d m n 0 

Th(IV)a -0.0451 0.747 1.16 
Pa(V)a -0 .172 3.099 -9.33 
U(VI)b) -0.0349 0.483 1. 31 0.35 -0.26 1. 53 0. 71 

Np(V) 0.469 -6.759 25.47 0.35 -0.26 1.80 0. 71 
Puc -0.0699 1.049 -0.22 0.45 -0.35 5.60 0.71 

Am(I I I) -0.0562 1.207 -2.13 0.40 -0.62 1.80 0. 71 

a Data estimated from measurements on Al 2o3 and s;o2 only (_gz) 

[Th] = 2.5x10-9M. [Pa] = 4x10- 12M 
b [ ] -12 Fror:i .!.§_. U = 9.5x10 M 
C Predominantly Pu(IV), but probably with some contributions from 

Pu(V). 
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Table 6 Estimated distribution coefficients ( Kd , kg/kg) a 

Element pH 
7 8 8.2b 9 

Th(IV)c 15000 18000 18000 17000 
11000 13000 13000 12000 

Pa(V)c 8600 28000 23000 43000 
6100 20000 23000 30000 

U(VI)d 960 870 840 680 
680 620 590 480 

Np(V) 14 26 38 420 
10 19 28 310 

Pue 5000 5000 4800 3600 
4400 4400 4300 3200 

Am( II I) 3700 8500 9700 15000 
2300 5200 6000 9300 

a Upper value obtained by eqn. 2a. This would correspond to an 
"average" granite. Lower value obtained by eqn. 2b, assuriing a 
silica rich rock (30% quartz, 5% dark minerals). This could be 
considered as a conservative "reference" value representative of 

b the lower range of expected values (but not minimum). 
pH in the artificial groundwater used as a reference system 
(Table 3). 

c See foot-note a, Table 5. 
d See comment in text on the concentration dependence. 
e See foot-note c, Table 5. 

Data for oxidizing and reducing conditions that could serve as 
reference values for granitic groundwater systems are given in 
Table 7. 
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Table 7 Reference distribution coefficients at pH 8.2 
(upper and lower values as in Table 6) 

Kd(kg/kg) 
Element Oxic conditions Reducing conditions 

Th 18000 18000 
13000 13000 

Pa 33000 (18000)a 
23000 (13000) 

u 840b (4800)c 
590 (4300) 

Np 38 ( 18000) a 
28 (13000) 

Pu 4800d (9700)e 
4300 (6000) 

Am 9700 9700 
6000 6000 

a Assuming tetravalent state and a sorption behaviour similar to 
Th. Probably higher values would be expected for Pa, considering 
the hydrolysis properties of this element. 

b At low uranium concentrations and closed system (see comments in 
text). 

c Predominantly U(IV), but possibly some contribution from higher 
oxidation states, similar to plutonium. 

d See foot-note c, Table 5. 
e Assuming trivalent state and a sorption behaviour similar to Am. 

Eqn. (2) and the values in Table 5-7 would be valid under the 
following assumptions: 

o The aqueous phase is a typical groundwater, not necessarily 
of low salinity, but with pH in the 7-9 range. 

o The solid phase is granite. 

o The total nuclide concentration is well below maximum solubi­
lity, as determined by any sparingly soluble compound. 
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Thus, effects of e.g. nuclide concentration, presence of strong 
complexing agents, temperature and time, etc. are neglected. 

Significant increases of the distribution coefficient with time 
(by up to one order of magnitude) have been observed, particularly 

for the actinides in their lower oxidation states and at pH where 

neutral species would dominate. 

For rocks rich in "dark" minerals, weathering products or chemi­
sorbing accessory minerals considerably higher distribution 

coefficients would be obtained than the "average" values in Table 
6 (by up to 1.5 orders of magnitude), which is obvious when 
considering the sorption data for the individual minerals (C.f. 

Appendix). 

It is not likely that rock compositions in igneous rocks would be 

encountered that would give distribution coefficients well below 

the II reference" values. Thus. the values in Table 6 and 7 would 
reasonably well define the lower range of expected actinide 

distribution coefficients in granite-groundwater systems. 

An exception is the uranium system. At high nuclide concentrations 
and/or high carbonate concentrations under oxic conditions (e.g in 
systems open to air) much lower distribution coefficients (by up 

to 2 orders of magnitude) have been reported in the literature. 
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DISTRIBUTION COEFFICIENTS 

Distribution coefficients (Kd, kg/kg) for Am(III), Np(V) and Pu as 
a function of pH are given in Figure 1-1 to 1-9 {Am), 1-10 to 1-18 
{Np) and 1-19 to 1-21 {Pu). Aqueous phase is groundwater (GW) or 4 
M NaCl. Concentrations etc. are given in Table 1-1. 

Table 1-1 Conditions for distribution measurements 

Solid phase: Minerals according to Table 3. 
Particle size fraction (after sieving) 
Amount of solid in batch experiments 

0.044-0.063 mm 
0.5-1 g a 

Aqueous phase: Artificial groundwater (Table 2) or 4 M NaCl. 
Volume in batch experiments 
Solid/liquid ratio 

40-50 ml a 
6-15 g/1 a 

Initial radionuclide concentrations (l.8-5.0)xl0-9M {Am) 

Other parameters 
Temperature 
Contact time 
Phase separation 

Oxic conditions 
Equipment 

(2.0-5.3)xl □- 11M (Np)a,b 
1,8xl0- 11M (Pu)a,b 

22+2°C 
5d 
Centrifugation 
(lh, 4000g) 

Po 1 yea rbona te, 
polypropylene 

a Exact amounts of solid, aqueous phase as well as nuclide 
concentration for the ea 1100 measurements given in Fig. 1-1 to 
1-21 are available, but not given in this report. 

b Also some preliminary measurements with concentration around 
10-B M. 

All curves in Figure 1-1 to 1-21 are arbitrarily drawn. 
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o pyrite, • cha 1 copyri te 
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Figure 1-2 Kd for Am in GW (a), 4 M NaCl (b) - oxides. 

o magnetite, • limonite, o hematite, ■ corundum, 

o gibbsite 
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Figure 1-3 Kd for Am in GW (a), 4 M NaCl (b) - fluorides, 
sulfates, carbonates and phosphates. 
o fluorite, □ anhydrite,• dolomite, ■ calcite, 
◊apatite, ♦ monazite 



45 

105 a 

0 
4 

10 -C') 
.:it. 

"iii a3 ~1 
"0 
:.:: 

2 
10 

101 
~ 

I 
4 5 6 7 8 9 

pH 

105 b 

4 
10 -C') 

.:it. -C') 03 

d ~1 
"0 
::a:: 

2 .. 
10 

• 
101 

I 

4 5 6 7 8 9 
pH 

Figure 1-4 Kd for Am in GW (a), 4 M NaCl (b) - neso and soro 

silicates. 

o olivine,• almandine, c sphene, ■ zircon, 

◊ epi dote 
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Figure 1-5 Kd for Am in GW (a), 4 M NaCl (b) - cyclo and ino 
silicates. 
o beryl, eaugite, □ hornblende, ■ attapulgite 
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Figure 1-6 Kd for Am in GW - phyllo(2) silicates. 

c kaolin, • halloysite, o serpentine 
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Figure 1-7 Kd for Am in GW (a), 4 M NaCl (b) - phyllo(3) 
silicates. 
o montmorillonite, • biotite, omuscovite, 
■ chlorite 
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Figure 1-8 Kd for Am in GW (a), 4 M NaCl (b) - tecto silicates. 
o al bite, • rnicrocline, □ bytownite, ■ anorthite, 
o quartz 
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Figure 1-9 Kd for Am in GW - igneous rocks. 
o granite (Climax Stock), • granite (Westerly), 
u basalt 
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Figure 1-10 Kd for Np in GW (a), 4 M NaCl (b) - sulfides. 

o pyrite, • chalcopyrite, c galena, ■ molybdenite, 

o chalcosite 
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Figure 1-11 Kd for Np in GW (a), 4 M NaCl (b) - oxides. 
o magnetite, • limonite, □ hematite, ■ corundum, 
o gibbsite 
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Figure 1-12 Kd for Np in GW (a), 4 M NaCl (b) - fluorides, 
sulfates, carbonates and phosphates. 
o fluorite, □ anhydrite, ■ calcite, <-.' apatite 
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Figure 1-13 Kd for Np in GW (a), 4 M NaCl (b) - neso and soro 
silicates. 

o olivine, • almandine, oepidote 
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Figure 1-14 Kd for Np in GW (a), 4 M NaCl (b) - ino silicates. 
• augite, □ hornblende, ■ attapulgite 
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Figure 1-15 Kd for Np in GW (a), 4 M NaCl (b) - phyllo(2) 
silicates. 
o kaolin, o serpentine 
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Figure 1-16 Kd for Np in GW (a), 4 M NaCl (b) - phyllo(3) 
silicates. 
o montmori 11 on ite, • bi ot ite, ■ eh l ori te 
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Figure 1-17 Kd for Np in GW (a), 4 M NaCl (b) - tecto silicates. 
o al bite, • microcl ine, □ bytownite, o quartz 
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Figure 1-18 Kd for Np in GW - igneous rocks. 

c granite (Climax Stock), • granite (Westerly), 
□ basalt 
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Figure 1-19, Kd for Pu in GW - non-silicates. 
o pyrite,• magnetite, □ apatite 
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Figure 1-20 Kd for Pu in GW - neso and ino silicates. 
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Figure 1-21 Kd for Pu in GW - phyllo and tecto silicates. 
o montmorillonite, • biotite, o quartz 
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