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Abstract 

The thermoelastic response due to a time-dependent rectangular heat source in a semi-infinite 
medium is analysed. The problem originates from studies of nuclear waste repositories in rock. 
Canisters containing nuclear waste are deposited over a large rectangular area deep below the 
ground surface. An important concern is that dangerous waste from damaged canisters may 
eventually reach the biosphere by groundwater moving in cracks and fractures in the rock. The 
stress and strain fields are therefore of main interest, since they influence crack formation and 
crack widths. 

The solution for a time-dependent heat source is obtained from the corresponding instanta
neous heat source by a Duhamel superposition. The thermoelastic problem for the instantaneous 
rectangular heat source in an infinite surrounding is solved exactly. An important step is the 
introduction of so called quadrantal heat sources. The solution for the rectangle is obtained 
from four quadrantal solutions. The solution for the quadrantal heat source depends on the 
three dimensionless coordinates only. Time occurs in the scale factors only. 

The condition of zero normal and shear stresses at the ground surface is fulfilled by using a 
mirror heat source and a boundary solution. The boundary solution accounts for the residual 
normal stress at the ground surface. Using a Hertzian potential, a surprisingly simple solution 
is obtained. 

The final analytical solution is quite tractable, considering the complexity of the initial 
problem. The solution may be used to test numerical models for coupled thermoelastic processes. 
It may also be used in more detailed numerical simulations of the process near the heat sources 
as boundary conditions to account for the three-dimensional global process. 

Sammanfattning 

Den termoelastiska responsen pa en tidsberoende rektangular varmekalla i ett halvoandligt 
medium analyseras. Problemet harror fran studier av karnbranslelager i berg. Kapslar med 
radioaktivt avfall placeras over en star rektangular area djupt nere under markytan. Farligt 
avfall fran skadade kapslar med karnbransle kan potentiellt na biosfaren med grundvatten som 
strommar i sprickor i berget. Tojnings- och spanningsfalten ar darfor av intresse eftersom dessa 
paverkar spickbildning och sprickvidd. 

Losningen for en tidsberoende varmekalla erhalls fran motsvarande momentana varmekalla 
genom superposition. Det termoelastiska problemet for en momentan rektangular varmekalla 
i en oandlig omgivning loses exakt. Ett viktigt steg ar inforandet av en sa kallad kvadrantvarme
kalla. Losningen for rektangeln erhalls fran fyra kvadrantlosningar. Losningen for kvadrantvarme
kallan beror enbart pa de tre dimensionslosa koordinaterna. Tiden upptrader enbart i skalfak
torer. 

Villkoret att normal- och skjuvspanningar ar noll vid markytan uppfylls med hjalp av en 
spegelvarmekalla och en 'randlosning'. Denna losning tar hand om den resterande normal
spanningen vid markytan. Med hjalp av en Hertzsk potential erhalles en anmarkingsvart enkel 
losning. 

Den slutliga losningen ar forhallandevis hanterlig om man beaktar det ursprungliga prob
lemets komplexitet. Losningen kan anvandas for att testa numeriska modeller av kopplade 
termoelastiska processer. Den kan ocksa utnyttjas i mer detaljerade numeriska simuleringar av 
forloppet nara varmakallorna som randvillkor for att fa med den mer globala tredimensionella 
processen. 
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1 Introduction 

In the KBS-3 concept, nuclear waste from the Swedish nuclear power plants is put in some six 

thousand canisters, which are buried in solid rock at a depth H of 500 m below the ground 

surface. See Figure 1, left. The canisters are placed in boreholes below parallel tunnels at a 

spacing D of about 6 m. The distance D' between the tunnels is about 25 m. The nuclear waste 

repository consists of canisters in a large, rectangular grid. The total area of the rectangle with 

the side lengths 21 and 2B is almost 1 km2 (6·25 • 6000 m2 ). Each canister lies at the center of 

a small rectangle with the side lengths D and D'. 

z 
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Figure 1: Left: Nuclear waste repository with heat-emitting canisters placed along tunnels. 

Right: Thermoelastic problem with a time-dependent rectangular heat source plane. The stress 

is zero at the ground surface z = 0. 

The canisters emit heat due to radioactive decay in the -nuclear waste. The heat sources 

from all canisters create a complex three-dimensional, time-dependent temperature :field in the 

ground in and around the repository. This thermal problem is studied in Claesson, Probert 

(Jan. 1996). The local problem around a particular canister is not considered here. On a larger 

scale ( above D and D'), there is a rectangular heat source plane: 

q(t) W /m2 at - L < x < L, -B < y < B z = 0 (1) 

The heat emission per canister becomes D D' q( t) (W). The heat emission decreases with time in 

a known way. We will use a sum of a few exponentials with different decay times to represent the 

function q(t). The emitted heat warms the rock and induces a thermoelastic stress :field. The 

rock mass serves as a protective barrier against the nuclear waste. In the worst-case scenario, 

groundwater may transport nuclear waste all the way from damaged canisters to the biosphere. 

Groundwater flow requires an open fracture and crack system. The stress and strain fields are 

therefore of main interest, since they influence crack closure, opening, formation and widths. 

Thermal stresses and temperature fields are studied in Israelsson (1995). Solutions for point 

sources from all canisters are summed directly. 
The purpose of this study is to analyse the thermoelastic process in the rock caused by the 

rectangular heat source. The process is of interest for different time-scales from the first years 

to thousands of years. The behavior in and around the repository region, but also far away from 
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the canisters, is of interest. 
A particular aim for the analytical approach is to gain a physical understanding and the 

possibility to quantify particular processes and th<>ir interactions. 
An exact analytical solution for the ti111e-depe11d<•11t, three-di111c11sional process is derived. 

The solution, which is not valid in the immediate vicinity of single canisters with their local 

complications, is surprisingly simple, considering the complexity of the coupled process. 

The solution may be used as boundary conditions in numerical modelling of the local pro

cesses around a canister. There are not many analytical solutions for more complex coupled 

thermo-elastic processes. The presented solution should be a good one to test numerical models. 

General references for thermo-elasticity is Boley and Weiner (1960) and Parkus (1959). Gen

eral formulas used here are taken from the latter reference. The radial problem for a point heat 

source may be found in textbooks, for example Timoshenko and Goodier (1970). In our literature 

search, we did not find any solution for the rectangular heat source. 
This paper deals mainly with derivation of the solution with its various components. The 

results will be applied to the KBS-3 case in a second report. The corresponding problem of 

the thermoelastic response to a single, finite line heat source is studied in Claesson, Hellstrom 

(1995). 

2 Mathematical problem 

The linearly elastic, isotropic, homogeneous medium is semi-infinite: -oo < x < oo, -oo < y < 
oo, -oo < z < H. In the basic case, the thermoelastic stress and strain fields are caused by the 

temperature field T(x,y,z,t) of an instantaneous h<•a.t source. Th<• heat e0 (J/m2 ) is emitted at 

t = 0 over a rectangular surface z = 0, -1, < x < /,, - IJ < y < IJ. 

The solution for any time-dependent heat source q(t) (W /m2 ) is then obtained by superposi

tion using a Duhamel integral. See Section 20. We will in particular consider the case when q(t) 
consists of a sum of exponentially decaying components. The solution for this case is studied in 

Section 21. 
The displacement field u = (u, v, w) satisfies Navier's equations, Parkus (1959): 

\72 (u) + _1 _v'(e) = 2a(l + v)VT 
1 - 2v 1 - 2v 

(2) 

Here, v (-) is Poisson 's ratio, e (-) the volume expansion and a (1/K) the coefficient of linear 
thermal expansion. The strain components are: 

{)u 
Exx = -8x 

(3) 

The relations between strain and stress are, Parkus (1959): 

( v l+v ) 
<5xx = 2µ Exx + l - 2v e - l - 2v aT 

E 
/l = ----

2( I + v) 
(4) 

Here, E denotes Young's modulus andµ the modulus of shear. 
The solution ( u, Exx, a xx ••• ) shall tend to zero at infinity ( ✓,_x_,,.2 -+-y""""2 -+ oo or z -+ -oo ). The 

stress components at the ground surface z = H are zero: 

a zz = 0 a zx = 0 a zy = 0 at z = H (5) 
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3 Temperature field 

The heat e0 (J/m2 ) is emitted at t = 0 over the rectangular surface -L < x < L, -B < y < B, 
z = 0. The total emitted heat becomes 4B Leo ( J). The temperature field due to this heat source 
involves the two lengths L and B. A similar problem without these lengths is to consider the 
heat source: 

eo•sign(x)·sign(y) over z=0 at t=0 (6) 

The heat e0 (J/m2) is emitted in the quadrants x > 0, y > 0, z = 0 and x < 0, y < 0, z = 0, 
while -e0 (J /m2 ) is emitted in the two other quadrants x > 0, y < 0, z = 0 and x < 0, y > 0, 
z = 0. We will call this heat source distribution a quadrantalheat source. Let Tq;(x,y,z,t) be 
the temperature field from the quadrantal heat source in infinite space -oo < x,y,z < oo. This 
temperature is superimposed on the undisturbed temperature field in the ground. We have, 
Carslaw-Jaeger (1959): 

T ·(x y z t) = 1= dx'loo dy'eo. sign(x'). sign(y'). e-[(x-x')2+(y-y')2+z2]/(4at) (7) 
qi , ' , (4 t)3/2 -oo -oo pc 1ra 

or 

Tq;(x, y, z, t) = eo · erf (-x-) • erf (-y-) . 1 . e-z2 l(4at) 
pc v'4at v'4at v'4Jrat 

(8) 

Here, a (m2/s) denotes the thermal diffusivity, p (kg/m3 ) the density, c (J/(kg-K)) the specific 
heat capacity, and erf ( x) the error function: 

erf(x) = l fox e-s2 ds (9) 

The temperature field Tq;(x, y, z, t) involves integrals in x and y of the field from point heat 
sources. The second-order derivative with respect to x and y gives the field from a point source 
at the center (0, 0, 0). We have: 

4e0 

pc 
1 . e-(x2+Yz+z2)/(4at) 

v'41rat3 
This fact will be used in Section 6. 

(10) 

The temperature field from the rectangular heat source is obtained from superposition of 
four quadrantal solutions of the above type. This follows from the identity: 

0.5 [sign(x + L)- sign(x - L)] • 0.5[sign(y + B) - sign(y- B)] = 

{ 1 lxl < L and JyJ < B 
- 0 outside the rectangle 

(11) 

The first factor in x is equal to +1 for Jxl < L and O for Jxl > L. The other factor has the 
same behaviour in y. The product is equal to + 1 for Jxl < L and lvl < B, and it is O elsewhere. 
We get four products of the type (±)sign(;i: ± L) · (± )sign(y ± IJ). Each of these corresponds 
to a solution Tqi with x replaced by x ± L and y hy y ± B. The temperature field from the 
instantaneous rectangular heat source is then: 

Trec,i(x, y, z, t) = 0.25 · [Tq;(x + L, y + B, z, t) - Tq;(x + L, y - B, z, t,) 

- Tqi ( X - L' y + B' z, t) + Tqi ( X - L' y - B, z, t)] 

4 
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Here, Tqi is given by (8). The above temperature field can be rewritten in the following more 
compact form: 

(13) 

The summation indices nx and ny assume the values + 1 and -1 only. 
The solution for any time-varying heat source q(t) over the rectangle is obtained by super

position as a Duhamel integral, Carslaw-Jaeger (1959) and Subsection 20.1: 

( " " nxny ft q(t') ( J J 
T x,y,z,t) = L,; L,; -- · Jo -- · Tqi x + nxL,y + nyB,z,t - t )dt 

n,,=±1 ny=±l 4 o eo 
(14) 

The factor eo cancels in the above formula, since lqi is proportional to eo. 
The essential problem to solve is the thermoelastic response to the quadrantal temperature 

field T9;(x, y, z, t). The response for the rectangular heat source is obtained by superposition of 

four solutions with x replaced by x ±Land y by y ±Bas in Eq. (13). The solution for any q(t) 
is then obtained by a Duhamel integral as in Eq. (14). 

4 Displacement potential for infinite space 

We first consider the problem for infinite space ( -oo < z < oo) without the boundary conditions 

(5) at the ground surface z = H. A second solution to account for the boundary is studied in 

Section 12 and onwards. 
A few thermoelastic problems may be solved by use of a single displacement potential 

q>(x, y, z, t) (m2), Parkus (1959): 

This is an equation of Poisson's type. Navier's equation (2) is satisfied if q> is a solution of 

'v2<I> = 1 + V o:T 
1-v 

(15) 

(16) 

The temperature field is considered at a.11y time l > 0, so <l>(:i:, y, z, l) depends on the spacial 

coordinates with t as a parameter. 
Eq. (16) is to be solved for T = Tqi· The displacement potential is the solution of: 

y72 q> = 1 + v. eoa . _1_. erf (-x-) . erf (-y-) . e-z2/(4at) 
1 - V pc.ji Aat Aat Aat (17) 

The temperature Tqi on the right hand side is antisymmetric in x and y. We will choose a 

particular solution which is odd in x and in y. 

The introduction of the quadrantal heat source is a crucial step to facilitate the analysis. 

The lengths Land B do not occur in the quadrantal problem. The problem (for infinite space) 

involves the spacial coordinates only. The time t occurs as the factor y'4at. We will see in the 

dimensionless formulation in the next section that time only occurs as a scale factor. The basic 

quadrantal solution depends on the three dimensionless coordinates only. 

The spacial derivatives of <I>( x, y, z, t) give the three displacement components: 

a<I> 
U=-

OX 
a<I> 

v=-
&y 

&<I> 
w=-

{)z 
(18) 

The second-order derivatives give the strain components, Eq. (3): 
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/J2g;, 32g;, 32g;, 
Exx = 8x2 Eyy = oy2 Ezz = 8z2 

32g;, 32g;, 32g;, 
(19) 

Exy = OxOy Exz = OXOZ Eyz = ayoz 

The volume expansion is given by the Laplacian of g;>: 

32g;, 32g;, 32g;, 
e = v72g;, = 8x2 + 8y2 + 8z2 (20) 

The stress components are given by the following simple expressions, Parkus 1959: 

( (j2if? 2 ) 
axx = 2µ 8x2 - 'v if? 

iP<t> 
CTyz = 2Jt--. i.)yiJz 

(21) 

5 Dimensionless formulation 

The length Fat is a measure of the thermal influence range from the heat source at time t. 
This length, which is the only one occurring in the problem (17) except for the coordinates x, y 

and z, is used for the dimensionless coordinates: 

I X 
X =--

Fat 
I Y I z y--- z---- Fat - Fat 

The dimensionless gradient and Laplace operators become: 

'v = _1_v71 
v'4at 

v72 = _1_ ('v') 2 
4at 

(22) 

(23) 

The displacement potential if? satisfies Eq. (17). Inserting the dimensionless Laplace operator, 

we get: 

_1_. ('v')2 g;, = 1 + 11. eoa. _1_. T (x', y',z') 
4at 1 - 11 1r pc ~ q 

(24) 

Here, we have introduced the dimensionless tempera.1.ure Tq: 

Tq (x', y', z') = ..Ji· erf( x') · erf(y') • e-(z')2 (25) 

All quantities with index q refer to the antisymmetric quadrantal temperature field of Eq. (25). 

They are dimensionless and depend only on the dimensionless coordinates x', y' and z'. The 

original temperature Tqi, Eq. (8), is: 

T ( ) eo 1 ( , , ') qi x,y,z,t = - · ~ · Tq x ,Y ,z 
1rpc v4at 

(26) 

A dimensionless displacement potential is defined by: 

if?(x,y,z,t) = uov14£rt · if?q (x',y',z') (27) 

Here, u0 (m) is defined by: 
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1 + v eoa 
uo=--·

l - v 1rpc 

Then from Eqs. (24), (27) and (28), <Pq(x', y', z') shall satisfy: 

(\7')2<I>q = 1~ 

Here, Tq(x',y',z') is given by Eq. (25). 
The displacement vector u becomes, Eqs. (15), (23) and (27): 

u = /4 \71 ( uo../4<it · <I>g) = u0 • ug 

(28) 

(29) 

(30) 

The constant u0 , Eq. (28), is the scale factor for the displacement. The components of the 
dimensionless displacement uq are: 

q - o<I!g 
u - ox' (31) 

(The index q is placed in the upper position for all components of displacement, stress and 
strain.) 

The strain components become, Eqs. (19), (22) and (27): 

- Uo q 
Exy - r:.=;. Exy 

v4at 
(32) 

The scale factor for strain becomes u0 /-/4ai.. The dimensionless strain components, all with an 
upper index q, are given by second-order derivatives of <I>q: 

(33) 

The stress components become, Eqs. (20-21 ): 

Po g 
O'xx = J4at · (lxx 

_ Po q 
O' xy - ~ • O' xy 

v4at 
(34) 

The scale factor for stress is po/J4at. The constant Po (Pa-m) is, Eq. (28): 

E E eoa 
Po = 2µuo = -- · uo = -- · -

l+v 1-v 1rpc 
(35) 

The dimensionless stress components are given by: 

(36) 

6 Calculation of displacement potential 

The dimensionless displacement potential <I>q(x', y', z') is the solution of Eqs. (29) and (25): 

(37) 

In order to obtain a solution, the derivatives with respect to x' and toy' are performed, Eq. (10): 

( "')2 [ o2 <I>g ] - ;;; 2 -(x')2 2 -(y')2 -(z')2 ~ 4 -(r')2 v - v 7r • -e • -e · e - -e ox' oy' .,fi .,fi .,fi 
(38) 
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Here, r' is the radial distance. The right-hand side depends on r' only. The Laplace operator 
with radial variation only gives: 

(39) 

Two integrations in r' give: 

{)2 if>g = _ erf(r') +Ao+ i.!_ 
8x'8y' r' r' 

(40) 

The solution is regular at r' = 0. This means that A 1 = 0, since erf(r')/r' is regular at r' = 0. 
The constant Ao is put to zero. We had the requirement that if>g is odd in x' and in y', 

which means that <I>q is zero for x' = 0 and y' = 0. Then we get by integration in x' and in y' 
the following solution: 

ix' lay' erf (J( x11 )2 + (y11 )2 + ( z')2) 
if> (x' ' z') = - dx" d 11 • 

q ' y ' o o y --✓"(=x=11);::=;2=+=( y=,===, ):;;::2 =+=(=z==-'):::;;2:----'- (41) 

This is our basic solution for the problem in infinite space. The strain and stress components 
are obtained from second-order derivatives, Eqs. (33) and (36). 

The double-integral (41) for if>q may be written in a quite different form. The factor erf( ... ) 
is given by an integral in s from 0 to f = J(x 11 ) 2 + (y11 ) 2 + ( z')2, Eq. (9). The substitution 
s = s' f is made. The factor f cancels. Integrations in x" and in y" are readily performed. The 
following alternative expression for if> q is obtained: 

cp ( / / ')--ft [1 erf(x's)-erf(y's) -(z')2s2d 
q x 'y 'z - 2 lo s2 e s (42) 

Here, <I>a is given by a single integral. Tlw i11t.egrn11d is regular at 8 = 0, since erf(p) is propor
tional top near p = 0. 

7 Displacement field 

The dimensionless displacement field Uq is obtained by the first-order derivatives of <l>q(x', y', z'). 
From Eq. (41), we get: 

uq = 8<Pq = - [Y' erf ( J(x')2 + (y")2 + (z')2) d II 

{)x' lo J(x')2 + (y")2 + (z')2 y 
(43) 

vq = 8if>q = _ [x' erf ( J(x")2 + (y1 )2 + (z')2) dx" 

8y' lo J( x")2 + (y')2 + ( z')2 
(44) 

The expression for wq involves a double-integral. These integrals have to be evaluated numeri
cally. 

Alternative expressions are obtained from derivatives of Eq. ( 42): 

uq = - rl erf(y's) . e-[(x')2+(z')2]s2 ds 
lo s 
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(45) 

The dimensionless displacement Uq multiplied by u 0 gives the real displacement u, Eq. (30). 

We have after the substitution s/../4ai = s' in the integrals above: 

11/✓,fat f( ) qi( ) _ er ys -(r2-y2)3 2d 
u x, y, z, t - -u0 --- · e s 

0 s 

. 11/✓,w erf(xs) ( 2 2) 2 
vqi(x y z t) - -u --'-----'- · e- r -x s ds 

' ' ' - 0 0 S 

. /1/~ 2 2 

wqi( x, y, z, t) = uo./iiz Jo erf( xs) · erf(ys) • e-z s ds (46) 

The index qi is introduced to denote the instantaneous quadmntal solution for an infinite 

medium. The integrals are quite simple to evaluate numerically. 

8 Second-order derivatives 

The stress and strain fields are given by the second-order derivatives of <P q( x', y', z'). We have: 

EJ2<Pq _ 1 x'y' [ f( ') , -(x')2-(z')2 erf(y')] ----------err -re •---
8(x')2 r' (x')2 + (z')2 y' 

82 <Pq _ 1 X 1Y1 
[ f( ') I -(y')2-(z')2 erf(x')] ----·-----err -re •---

8(y')2 r' (y')2 + ( z')2 x' 

8 2 <P EJ2<Pq 82 <Pq 
q - T. 

8( z') 2 - q - 8( x')2 - 8(y')2 

82 <Pq 1 ( ') 
8x'8y' = - r' . erf r 

82 q,q _ 1 y'z' [ f( ') 1 -(x')2-(z')2 erf(y')] ----·-----err -re •---
8x'8z' r' (x') 2 + (z') 2 · y' 

{)2ipq _ 1 x' z' [ f( ') 1 -(y')2-(z')2 erf(x')] ----------err -re •---
8y'8z' r' (y')2 + (z')2 x' 

(47) 

The first formula for the second-order derivative with respect to x' is obtained from Eq. ( 43) 

or ( 45). A partial integration has to be performed in order to remove the integral. The second 

formula is obtained in the same way. The second-order derivative with respect to z' is more 

difficult. Therefore, Eq. (29) is used. The fourth formula is obtained immediately from Eq. (41). 

The fifth formula is obtained from Eq. ( 44) or Eq. ( 45 ). Here, a partial integration is again 

necessary. The last formula is obtained in the same way. 
The same factor occurs in the brackets of the second and sixth formula of ( 47). It is a 

function of x' and r': 

( r')2 - ( x')2 = (y')2 + ( z')2 (48) 

The expression within brackets in the first and fifth formula of ( 4 7) is equal to A'(y', r'). 

From Eqs. (33), (36), (29), ( 47) and ( 48), the dimensionless strain and stress components 

are: 
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q q l x' y1 A'( ' ') 
Exx = axx + Tq = r' . (x')2 + (z')2 . y 'r 

1 I I 

q - q T - X y A'( I ') 
Eyy - aYY + q - r'. (y')2 + (z')2. x ,r 

q _ q _ x'y' [ A'(y', r') A'(x', r') ] 
Ezz - azz + Tq - Tq - 7 (x')2 + (z')2 + (y')2 + (z')2 

1 ( I Eq = aq = - - • erf r ) 
xy xy r' 

1 
,,.q - ,,,.q -
cxz - vxz - I~ 

r 
y'z' I I I 

(x')Z + (z')2. A (y ,r) 

1 I / 

q - q - - • X z . A'(, I ') 

Eyz - cryz - r' (y')2 + (z')Z x 'r 

Here, Tq is given by (25) and A' by (48). 

9 Strain field 

(49) 

The real components of the strain field are obtained from the dimensionless expressions above, 

Eqs. ( 49), by insertion of the real coordinates x = y4at • x' etc., Eq. (22), and multiplication by 

the scale factor uo/,/4at,, Eq. (32). We get: 

qi _ uo xy A( ) 
Exx - - . 2 2 . Y, r, t 

r X + Z 

qi _ uo xy ( ) 
E YY - - · 2 2 · A x, r, t 

r y + z 

qi _ 1 + v uo [ xy xy ] 
E22 --1--a·Tqi(x,y,z,t)-- 2 2 -A(y,r,t)+ 2 2 -A(x,r,t) 

-v r x +z y +z 

i uo ( r ) E;;y = -- -erf --
r ~ 

qi _ uo xz A( ) 
Eyz--· 2 2 - x,r,t 

r y + z 

1 + v eoa 
no=--·-

1 - /I 1rf>C 
(50) 

The upper index qi refers to the qua.dranta.l solution i11 an infinite medium. The temperature 

field Tqi is defined by Eq. (26) or (8). The auxiliary function A is given by, Eq. ( 48): 

A(p,r,t) = A'(p',r') = A' ( ~' /;-::;) = 
v4at v4at 

= erf (-r-) - r. e-(r2-p2)/(4at). erf(p/,/4at,) 
,/4at, p 

p = x, y (51) 

10 Stress field 

The components of the real stress field are obtained from the dimensionless equations ( 49) by 

multiplication with the scale factor p0 / v'4at, (35 ): 

. Po 
crq• = - . 

XX T 

xy Ea 
2 2 • A(y, r, t) - -1-- · Tqi(x, y, z, t) 

X + Z -V 
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qi Po xy Ea 
cryy=-r · 2 2 -A(x,r,t)---·Tq;(x,y,z,t) 

y +z 1-v 

qi - Po [ xy A( ) xy A( )] Clzz - -- 2 2. y,r,t + 2 2. x,r,t 
r x +z y +z 

qi - Po yz A( t) Clxz--· 2 2· y,r, 
r X + Z 

qi _ Po xz ( ) Cly 2 --· 2 2 -Ax,r,t 
r y + z 

· Po ( r ) cr;~ = ---;: ·erf ~ 
E E eoa 

Po=--·uo=--•-
l+v l-v 1rpc 

(52) 

The functions A and Tqi are defined Eqs. (51) and (8). 
The above formulas in Sections by 9 and 10 give the complete analytical solution for the strain 

and stress fields caused by the instantaneous quadrantal heat source ( 6) with the temperature 

(8) in infinite space. 

11 Far-field 

The behaviour far away from the heat source plane z = 0 is of particular interest. Inserting 

z' ~ l in Eq. ( 41), we have: 

erf ( j ... + (z')2) '.::: 1 (z' ~ 1) 

<I> (x' y' z') ~ - dx" f dy"--;;======== ix' y' l 

q ' ' - o lo J( x")2 + (y")2 + ( z')2 
(53) 

The limit z' > 2 is sufficient in our application, since erf(2)=0.995. The higher limit z' > 3 

will always be an extremely good approximation, since erf(3)~0.99998. 

The double integral may (with some difficulty) be evaluated analytically. The result is: 

[x' (r' + y') y' (r' + x') (x'y')] <l>q(x',y',z') '.::: - -2 ln --, + -In --- - z' -arctan -
r' - y 2 r' - x' z' r' 

r' = j(x')2 + (y')2 + (z')2 

In real coordinates, we get from (27): 

( z' > 2) 

<I>(x,y,z) '.::: -uo [~ln (r + y) + ~ln (r + x)- z · arctan (xy)] 
2 r - y 2 r - x zr 

The expression for the far-field potential satisfies Laplace equation v'2 <1> = 0. 

The first-order derivatives give the displacement components: 

u qi '.::: - uo ln ( r + y) 
2 r - y 

r = jx2 + y2 + z2 

qi uo I (r + x) V '.:::-- n --
2 r - X 

z 
(z' = ~ > 2) 

v4at 

. (xy) wq' '.::: u0 • arctan zr 

(54) 

(55) 

(56) 

It should be noted that the far-field does not depend on time. The total amount of heat, and 

hence the total thermal expansion, is constant fort > 0. The far-field remains the same as long 

as the temperature field is concentrated to a limited region around z = 0. 
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The above far-field displacements may be obtained directly from the integrals ( 46). We let 

t tend to zero. Then for any z :/= 0, jz'I = lzl/ J4at ~ l. The upper limit in the integrals ( 46) 

tends to infinity: 1/../4ai,---. oo. We have from (46) and (56): 

[ 00 erf(ps). e-(r2-p2)s2 ds = ! ln (r + P) 
lo s 2 r - p 

p= x, y 

{ 00 
2 2 (xy) ..Jiz lo erf(xs) • erf(ys) • e-z s ds = arctan zr (z :/= 0) (57) 

The first integral is given in Gradstein, Ryzhik (1981, p.650). The second one may be found in 

Prudnikov et. al. (vol. II, p. 123), which is a huge ta.hie of integrals. 

The strain and stress fields become for large z': 

qi uo xy 
€ ~ -·--

xx - r x2 + z2 
qi uo xy 

€ ~-·---
yy - r y2 + z2 

€qi ~ _ uo [-x_y_ + _x_y_] 
zz - r x2 + z2 y2 + z2 

qi uo 
Exy ::= -

r 

qi uo yz 
€ ~-•---,

xz - r x2 + z2 

qi Po xy 
er ~ -•---

xx - r x2 + z2 

qi Uo XZ 
Eyz ::= - . 

r y2 + zZ 

Po xy 
crq• ~ -·---

YY r y2 + z2 

crqi ~ _ Po [-x_y_ + _x_y_] 
zz - r x2 + z2 y2 + z2 

i Po crq ~ --
xy - r 

; Po yz 
crq ~ -·--

xz - r x2 + z2 
i Po xz 

crq ~ -·--
yz - r y2 + z2 

(z' > 2) (58) 

(z' > 2) (59) 

The strain and stress fields are, except for the sea.le factors u0 and p0 , identical, since the 

temperature Tq; and the volume expansio11 ,. a.re put t.o zero in the far-field approximation. 

The above expressions for the strain and stress far-fields may be obtained by direct deriva

tions of the displacement, Eqs.(56) and (18-21). They may also he obtained from the general 

expressions (50) and (52) as limits for large z'. We have: 

z' > 2: r' > 2 erf( r') ::= 1 

Insertion in (51) and (8) gives: 

A(x,r,t) = A'(x',r') ::= 1 A(y, r, t) = A(y', r') ::= 1 Tq;(x,y,z,t) ::= 0 (60) 

12 Correction for semi-infinite space 

The problem studied this far concerns infinite space -oo < z < oo. The boundary conditions 

at the ground surface z = H are not accounted for. The three stress components CYzz, CFzx and 

CFzy must be zero at the free ground surface, Eq. (5). 
The temperature T from the rectangular heat source is superimposed onto the undisturbed 

ground temperature. The boundary condition for the temperature at the ground surface z = H 
is that the temperature is zero: 

T(x,y,H,t) = 0 (61) 
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This boundary condition for the temperature is readily satisfied by the introduction of a mirror 

heat source with opposite sign at z = 2H. We get two quadrantal heat sources, and Eq. (6) is 

replaced by: 

eo · sign(x) • sign(y) over z = 0 at t = 0 

- ea· sign(x) · sign(y) over z = 2H at t = 0 (62) 

A solution to Navier's equations (2) for the temperature T = Tq;(x, y, z, t) - Tq;(x, y, z - 2H, t) 

is obtained by subtracting from the above quadrantal solution the solution with z replaced 

by z - 2H. This solution for the quadrantal heat source and the negative mirror source does 

not satisfy the boundary conditions (5). The exact values for O"zz, O"xz and O-yz at z = H 

for the combined solution are given by Eqs. (244)-(246) in Appendix 1. The normal stress 

at the boundary z = H becomes zero, since the problem with the two quadrantal sources is 

antisymmetric with respect to the plane z = H. The two shear stresses, Eqs. (245)-(246), vary 

with x and y. They also depend on time t through the factor A'. The time-dependence vanishes 

when the far-field approximation is used (A'~ 1, Eq. (60)). 

We now make the major assumption that the Jar-field approximation may be used at the 

ground surface. We have seen in Section 11 that this assumption is valid with good accuracy 

when the distance His large compared to the so-call<'d thermal range (which may be defined as 

v4at): 

H > 2. v'4irt (63) 

The negative mirror heat source gave the remaining boundary-value problem of Appendix 

l. The normal stress at the boundary z = H is zero. The two shear stresses are prescribed 

and equal to the negative values of Eqs. (245)-(246) so that the total solution has zero stresses 

at z = H, Eq. (4). In the far-field approximation, Eq. (63), the boundary values become 

time-independent. 
The remaining problem is to solve Navier's equations (2) (without the temperature term, 

that is T = 0) for the prescribed shear stresses and zero normal stress in a semi-infinite medium. 

The corresponding problem for prescribed normal stress and zero shear stresses has been solved 

by Hertz; see Love (1927). The solution involves certain integrals of the prescribed normal stress. 

See Section 15. In order to be able to use this solution technique, we use a quadrantal mirror 

heat source of equal sign instead of one with opposite sign. We· have instead of (62) the following 

quadrantal heat sources: 

ea· sign(x) · sign(y) over z = 0 at l = 0 

e0 · sign(x) · sign(y) over z = "211 at l = 0 (64) 

The solution for the quadrantal mirror heat. source is given by the quadrantal solution of the 

preceding sections with z replaced by z - 2JJ. The two shear stresses for the sum of the original 

solution and the mirror solution are zero at the ground surface due to symmetry, while the 

normal stress o-zz is nonzero at z = H. 
The solution will now consist of three parts: 

1. The basic quadrantal solution for infinite space 

2. The solution from an equal mirror heat source a.t z = 2Il 

3. The solution to account for the remaining normal stress distribution at z = H 
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The quadrantal solution for the infinite medium is given above. The mirror solution is given 
in next section. The remaining problem to determine the response in the semi-infinite space 
-oo < z < H for our specific normal stress distribution at z = H is dealt with in Section 14 
and onwards. This third part will be called the boundary solution. 

The above solution with its three parts is based on the assumption (63). With this assump
tion, we get a time-independent boundary value problem for the third part. The assumption 
also.means that the temperature field from the heat source at z = 0 has not reached the ground 
surface z = H. Likewise, the temperature field from the mirror heat source at z = 2H, intro
duced below and in the next section, has not reached the ground surface z = H. This follows 
from z' = H j-,/4ai, > 2 and: 

erf(2) = 0.995 '.:::'. 1 (65) 

The assumption (63) implies that the temperature at the ground surface in approximately zero 
so that the boundary condition for the temperature, Eq. ( 61 ), is satisfied. 

The solution for the two quadrantal solutions (64) involves another approximation, since 
the temperature term in N avier's equations is not the exact one. Instead of the exact T = 
Tqi(x,y,z,t) - Tqi(x,y,z - 2ll,t), we use T = Tq;(x,y,z,t) + Tq;(x,y,z - 2H,t). But the 
temperature Tq;(x, y, z - 2Il, l) from the 111irror source is negligible for z < H in the far-field 
approximation (63). 

The main assumption (63) that the far-field approximation can be used, puts restrictions on 
t, to ensure that the solution is valid: 

H 
-->2 {:} 
-,/4ai, 

H2 
t<-

16a 
(66) 

The solution is valid in the whole region ( -oo < z < H) when t satisfies this condition. The 
solution at the repository level is valid during a longer time period since the error occurs slowly 
at z = H. A reasonable criterion for the validity of the solution at the repository level z = 0 
( and downwards) is: 

2H 
-->2 
-,/4ai, 

H2 
t<-

4a 
(67) 

It will take four times longer for the disturbance to reach the repository level than the ground 
surface. The solution will be totally incorrect for much larger times. 

As an example we consider the following case with data from the KBS-3 repository: 

H = 500 m a = l.62 • 10-6 m2 /s ⇒ 
5002 

t < 16 . 1.62 . 10_6 s '.:::'. 300 years (68) 

The temperature field reaches the ground su rfa.ce after :mo years for // = 500 m. A typical value 
of the thermal diffusivity a for granite is cl1ose11. The solution derived under this assumption 

will at least be valid for the first 300 years. At the repository level (z = 0) it will roughly take 
1200 years or more, before the error due to the far-field approximation becomes noticeable. The 

solution is not valid for much larger times ('.:::'.10,000). 
The three components give the total solution for the instantaneous quadrantal heat source, 

Eq. (6), in the semi-infinite space -oo < z < H. From this, the solution for the time-dependent 
heat emission at z = 0 is obtained by superposition as an integral in time. Finally, the solution 
for the rectangular heat source over -L < x < I,, -B < y < B at z = 0 is obtained by 
superposition in accordance with Eq. (12). The solution with its three parts is ta.ken for x and 
y replaced by x ± L and y ± B, respectively. 
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13 Solution for mirror heat source 

We seek the solution for the mirror quadrantal heat source at z = 2II: 

e0 • sign(x) · sign(y) over z = 2// a.t l = 0 (69) 

The mirror solution is obtained by substituting z with z - 211 in the above solution. The mirror 
solution is used in the region z < H or jz - 2HI > 11. Then by assumption (63) we have: 

lz-2HI H 2 ----> --> V4at V4at 
(70) 

This means that we may use the far-field expressions of Section 11. 
The components of the displacement become from Eq. (56): 

m _ Uo l (rm + Y) 
U - -- n 

2 Tm -y 
m Uo I (rm + X) 

V = -- II 
2 Tm - X 

wm = uo · arctan ( ( xy ) ) 
Z - 2H Tm 

(71) 

The index m is used to denote the solution for the mirror quadrantal heat source. The length 
Tm is the distance to the center of the mirror heat source: 

Tm= Jx 2 + y2 + (z - 2H)2 (72) 

The strain field is obtained from (58) by repla.ci11!!: r by Tm and z by z - 2H: 

m Uo xy 
£ = -·------

xx Tm x2 + (z - 2Ii )2 
"' uo xy 

E = -•------
yy r,,, y2 +(z-2//)2 

m uo [ xy xy ] 
Ezz = - Tm x2 + (z - 2H)2 + y2 + (z - 2Jl)2 

m Uo 
£ = --

xy Tm 

m Uo y(z - 2H) 
£ = -·------

xz Tm x2 + (z - 2H)2 
m Uo x(z - 2H) 

£ = -•------
yz r m y2 + ( Z - 2Jl)2 

(73) 

The stress field is obtained by the same substitutions in Eqs. (59). It differs from the strain 
field by the factor Po/uo only: 

m Po xy 
(T = - . ------

xx Tm x2 + (z - 2H)2 
m Po xy 

a = -·------
YY T,n y2 + (z _ 2Jl)2 

(Tm __ _ P_o [---x_y ___ + ___ x_y ___ ] 
zz- rm x 2 +(z-2H)2 y2 +(z-2H)2 

m Po 
(T = --

xy Tm 

m Po y(z - 2H) 
(T = -·------

xz Tm x2 + (z - 2H)2 
m Po x(z - 2H) 

(T = - . ------
yz Tm y2 +(z-2H)2 

(74) 

14 Conditions for boundary solution 

The stress field for the quadrantal heat source in a.n infinite rnediurn is given by Eqs. (52). At 
the ground surface z = If, the far-field expressions (59) may be used. The stress field from the 
mirror source is given by Eqs. (74). The sum of the two shear stresses at the ground surface are 
certainly zero: 

O'xz = 0 O'yz = 0 (75) 
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The normal stress CTzz at z = JI from these two parts becomes: 

2po ( xy xy ) 
erzz(x, Y, H, t) = - ToH x2 + Jl2 + y2 + f/2 (76) 

ToH = J x2 + y2 + H2 (77) 

The two contributions for z = H and z - 2H = - H are equal, so there is a factor 2 before Po• 

The third part, the boundary solution, shall balance the above normal stress. We get the 

boundary condition: 

cr~z(x, y, H, t) = erbO · cr{,(x, y, JI) (78) 

The index b refers to the boundary solution. Here, we have introduced a dimensionless function 

er{, and a new constant O"bQ (Pa) associated with the normal boundary stress: 

2po E 2uo 
erbo=-=--·-

H l+v H 
(79) 

The normal stress at z = H is determined by the dimensionless normal stress er{;: 

'( H) H ( xy xy ) 
crb x, Y, = Jxz + y2 + H2 :i:2 + 112 + y2 + J/2 

(80) 

This dimensionless function depends on x/ 11 and y/ II only. It is shown in Fig. 2. The function 

is odd in x and in y just as Tqi, Eq. (8), and it has a maximum in the first (and third) quadrant: 

' v'S-1 
crb,max = ✓ y'5 + 2 = 0.601 

!7s+I 
for x / Il = y / H = y ~ = 1.272 (81) 

Q3 2 

o-o.s 6 

0.5 

0.25 
.1 

0 

-1 

o-o.s 

-2 1~ '-._/ 

-3 
-3 -2 -1 

Figure 2. Dimensionless normal stress crb(x, y, II) for the boundary solution, Eq. (80). 

In Section 6, we used the second-order derivative with respect to x and y. The problem is 

reduced to that of a point heat source at x = y = z = 0. This derivative of cr1,(x, y, H), Eq. (80), 

becomes: 

82cr' H 3H3 
__ b ---+--
!l !l - 3 5 
uxuy TOH TOH 

(82) 
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This relation will be used in Section 16. 
Let us summarize the conditions for the boundary solution to correct for the boundary 

conditions at the ground surface. The displacement ub shall satisfy N avier's equation (2) in the 
half-space -oo < z < H without the temperature terms: 

2 1 
'v (ub) + --'v (eb) = 0 Cb = 'v · Ub 

1- 2v 
(-oo < z < H) 

The boundary conditions for the boundary correction solution at z = H are: 

(83) 

(84) 

We will solve this semi-infinite problem for the half-space 0 < z < oo and not for -oo < 
z < H. The new displacement Ubo satisfies Navier's equation (2) in the half-space 0 < z < oo 
without the temperature terms: · 

2 1 
'v (ubo) + --'v (ebo) = 0 ebO = 'v · UbO 

1- 2v 
(0<z<oo) 

The boundary conditions for the boundary correction solution at z = 0 are: 

a-!~( x, y, 0) = 0 o-!~(x, y, 0) = 0 <r~;( x, ;t/, 0) = o-bO · 0-1,(x, y, H) 

(85) 

(86) 

The final boundary solution (index b) is obtained by replacing z by H - z in all formulas for 
the boundary solution (index b0): 

The direction of the z-axis is reversed. The displacement w changes its sign: 

wb(x,y,z) = -wb0 (x,y,H - z) 

(87) 

(88) 

The shear strains €xz and €yz and the shear stresses <Tu and O-yz involving the z-coordinate are 
changed in the same way. We have for exam pie: 

(89) 

15 General formulas for semi-infinite space 

General formulas for the solution in the semi-infinite space 0 < z < oo, with a prescribed normal 
stress and zero shear stress at z = 0, have been derived by Hertz and others, Love (1927). 

The solution is obtained from the followi 11g potential due to Hertz: 

x=.2..J00 dx"j00 dy"O-zz(x 11 ,y11 ,0)·ln(z+J(x"-x)2 +(y"-y)2 +z2 ) z2:'.:0 (90) 
2,r -oo -oo 

The three components of the displacement are given by: 

u=- z--+(1-2v)-1 [ EJ2x &x] 
2µ &x&z &x 

V = - Z-- + ( 1 - 2v )-1 [ &2 x &x] 
2µ &y8z 8y 

w = - z- - 2(1 - v)-1 [ EPx &x] 
2µ &z2 &z 

(91) 
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The stress and strain components are then obtained from Eqs. (;J) and (4) (putting T = 0). 
The strain components are given by: 

1 [ 83 x . , EPx] 
Exx=- z~+(I-2v),:i 2 211 ux uz ux 

1 &3x 
Exz = 2µ z 8x8z2 

The volume expansion is: 

1 a3x 
E - -z--

yz - 2µ oyoz2 

1 EJ2x 
e = -- · 2(1 - 2v)-

2µ 8z2 

Here, we have used the fact that x satisfies Laplace equation: 

(92) 

(93) 

This follows from the fact that ln(z + r) satisfies Laplace equation. The potential x is just a 
superposition of this type of logarithmic solutions, Eq. (90). 

The strain components are given by the formulas ( 4) with T = 0: 

16 Calculation of Hertz' potential x 
We have to calculate Hertz' potential X, Eq. (90), with l7zz(x", y", 0) given by Eq. (78): 

x(x,y,z) = _!_Joo dx 11 j 00 dy"abo · a~(:i:",y",H) • In (z + r) 
21r -oo -oo 

r = Jex" - x)2 + (y" - y)2 + z2 

Here, o-' is given by Eq. (80): 

, H ( x" y" x" y" ) 
<Tb= J(x")2 + (y")2 + J/2 (:r:")2 + Jl'.l + (y")2 + /[2 

The double integral is difficult to evaluate. 

(95) 

(96) 

(97) 

We first make the variable transformations n = x" - x and /3 = y" - y. Then we take the 
derivatives with respect to x and toy. We derive a~(a + x,/3 + y). Using Eq. (82) we get: 

{)
2 o- H 100 100 (3H2 1 ) ( ) ,:i ~. = ~ da d/3 - 5 - - °"";3 ln z + Ja2 + j32 + z2 

uxuy 21r -oo -oo r o:/3 1 rv/3 
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ra/3 = J(a + x)2 + (/3 + y)2 + //2 • (98) 

The factor involving Ta/3 in the integral may be written as a partial derivative with respect to 

H (with a+ x and f3 + y kept fixed): 

~ ( : ) = -j- _ 3:2 

8 H r a/3 r a/3 r a/3 
(99) 

So we have: 

82 x [} [ JI 1= 1= In ( z + J a 2 + 132 + z2) ] 
-- - -abOH · - - do: d/3-,..:::-_-:::~-:_-_-..:_-_-_-~-----_:~-
axay - 8H 21r -= -oo J(o: + x)2 + (/3 + y)2 + H23 

(100) 

The above double integral occurs in solutions of Laplace equations for the semi-infinite space 

(z > 0). Consider the following potential problem for V(x, y, z) in z > 0: 

{ v'2V = 0 z > 0 
V(x,y,0) prescribed (lOl) 

The general solution is given by the theory of Green functions: 

V(x,y,z) = _!__1= do:1= dfi V(a,,8,0) 3 

21r -oo -oo J(a-x)2+(/3-y)2+z2 
(102) 

This integral is of the type within the brackets in Eq. (100), if z is replaced by Hand V(o:,,6,0) 

is given by ln ( z1 + Jo:2 + /P + z;) with z1 = z. 

Now, ln(z + r) satisfies Laplace equation: 

We may replace z by z + z 1 • Let V be gi ve11 by 

V(x, y, z) = In ( z + z1 + Jx2 + y2 + (z + z1 ) 2) 

Then we have: 

Thus, we have from formula (102): 

( 

,-------·) 00 = ln (z1 + J o:2 + /32 + z;) 
In z + z1 + Jx2 + y2 + (z + z1)2 = _!__ 1 da 1 d/3--;:;:::::========== 

21r -= -= J(o:-x)2+(f3-y)2+z2 

(103) 

(104) 

(105) 

(106) 

(107) 

This double integral is identical to the integral in Eq. (100) after the following substitutions 

Z --* H Z1 --* Z X --* -x y --* -y. (108) 

Thus we have: 

(109) 
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After derivation with respect to H, we have the remarkably simple formula: 

o2x 1 
-- = -abOH • --;::======~ 
oxoy Jx2 + y2 + (H + z)2 

(110) 

The potential x is odd in x and in y, and hence zero on- the axis x = 0 and y = 0. This 

follows from Eq. (90) and the fact that a~ is odd in x and in y, Eq. (80). It is obtained from 

the integral of Eq. (110) from x = 0 and y = 0: 

- -(7 H rx dx" /Yd II 1 
X - bO lo lo y J(x")2 + (y")2 + (H + z)2 

(111) 

This double integral has already been evaluated in Section 11. The result becomes, Eqs. (53-54): 

[ X (rH + y) y (rH + X) ( xy )] x=-2po -ln -- +-ln -(z+H)arctan ( H) 
2 rH - y 2 rH - x z + rH 

where 

r H = j x2 + y2 + ( z + H )2 

The factor <7boH is equal to 2po, Eq. (79). 

17 Derivatives of x 

(112) 

(113) 

The boundary solution is obtained from derivatives of X, Eqs. (91 ), (92) and (95). The Hertzian 

potential x is given by Eq. (112). It depends on the spacial coordinates x, y and z, but it is 

independent of time t. The distance rH is defined by Eq. (113). 
The first-order derivatives of x(x, y, z), Eq. (112), become in the same way as in Eqs.(55-56): 

OX ( xy ) - = 2Po · arctan 
oz (z + H)ru 

The second-order derivatives of x(x, y, z) become: 

o2x 1 xy 
-=2po·-•-----
8x2 rH x2 + (z + H) 2 

o2x 1 y(z + H) -- = 2po . - . --,-----
oxoz rH x2 + (z + H) 2 

82x 1 x(z + H) -- = 2po . - . --,----
oyoz rH y2 + (z + Jl)2 

D2x 1 xy 
-=2po·-•----
Dy2 rH y2+(z+H)2 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

(120) 

The sum of the three first second-order derivatives is zero, which verifies that x satisfies Laplace 

equation: 'v2x = o. 
We need the following third-order derivatives of x(x,y,z): 
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&3x z + H 
&x&y&z = 2po. r1 (121) 

a3x z + H xy ( 1 2 ) 
&x2&z = -2po.-;;;-. x2 + (z + /1)2 r71 + x2 + (z + JI)2 (122) 

a3x = _2Po. z + H . xy (-1 + 2 ) 
&y2&z TH y2 + (z + JI)2 TJ1 y2 + (z + H)2 

(123) 

_a3_x_ = 2Po. _Y_. ___ 1 ___ ( 1- (z + H) 2 (-1-+ ___ 2 ___ )) 
8x8z2 TH x2 + (z + H)2 TI-! x2 + (z + H)2 (124) 

a3x = 2Po · _:__ • 1 (1 - (z + H) 2 (~ + 2 )) 
8y[)z2 TH y2 + (z + Jl)2 Tif y2 + (z + H)2 

(125) 

83x z + II [ xy ( 1 2 ) - = 2po · -- ----- - + ----- + 
&z3 TH x2+(z+ll)2 r71 x2+(z+ll)2 

xy ( 1 2 )] 
+ y2 + (z + JI)2 TJ1 + y2 + (z + H)2 

(126) 

It is easy to verify that fz 'v2x = 0. 

18 Boundary solution 

The boundary solution in the region z > 0 is ohta.ined by insertion of the derivatives of X 

in Eqs. (91), (92) and (95). The obtained expressions for all displacement, strain and stress 
components are given in Appendix 2. This boundary solution for the region z > 0 has the index 

bO. 
The final boundary solution for the region z < JI is obtained by the substitution (87), where 

z is replaced by H -z. The changes (88) and (89) must also be performed. We have for example: 

(127) 

The radius TH, Eq. (113), becomes equal to rm, Eq. (72): 

THlz-H-z = /x2 + y2 + (II - z + 11)2 = /x 2 + y2 + (2H - z)2 = Tm (128) 

To simplify the solution two commonly occurring denominators will be replaced by Dx and Dy 
(m2). The two denominators are: 

Dx = x2 + (2H - z)2 Dy = y2 + (2H - z )2 (129) 

The three displacement components become from Eqs. (247-249): 

b [H - z y(2H - z) I - '21/ I (rm + y)] 
u = 2uo -- · ---- - -- 11 

Tm Dx 2 1"m - Y 
(130) 

v = 2uo -- · __;_ ___ - -- 11 b [H -z x(2H - z) I -211 I (Tm+ x)] 
Tm Dy 2 Tm - X 

(131) 
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b [H - z ( xy xy) ( xy )] w = 2u0 ~ Dx + Dy + 2(1 - v) arctan . (21/ _ z)Tm 

The strain field becomes from Eqs. (250-255): 

b 1 xy [ ( 1 2 ) ] Exx = 2uo · - · - 1 - 2v - (JI - z)(2II - z) 2 + -
Tm Dx Tm Dx 

b 1 xy [ ( 1 2 )] Eyy=2u0 ·-·- 1-2v-(ll-z)(2ll-z) 2 +-
Tm Dy Tm Dy 

b 1 [ xy ( ( 1 2 ) ) Ezz = 2uo · - -- 1- 2v + (H - z)(2H - z) 2 + - + 
Tm Dx Tm Dx 

+ xy (1 -2v + (H - z)(2H - z) (i + 2-))] 
Dy Tm Dy 

b 1 [(H-z)(2H-z) , ] 
t: =2uo•- -------1+21/ 

xy Tm T;, 

b 1 y( H - z) ( . 2 ( 1 2 ) ) Exz = -2uo · - · --- 1 - (2J/ - z) 2 + -
Tm Dx Tm Dx 

b 1 x(H - z) ( 2 ( 1 2 ) ) Eyz = -2uo · - · --'--~ 1 - (2H - z) 2 + -
Tm Dy Tm Dy 

The stress field becomes from Eqs. (256-259): 

b 1 [ xy ( . ( 1 2 ) ) xy] crxx = 2po · - -- 1 - (JI - z)(21/ - z) 2 + - + 2v-
Tm Dx Tm Dx Dy 

b 1 [ xy ( . ( 1 2 ) ) xy] crYY = 2p0 • - -- 1 - (H - z)(2II - z) 2 + - + 2v-
Tm Dy Tm Dy Dx 

b 1 [ xy ( ( 1 2 )) CTzz = 2po · - - 1 + (H - z)(2ll - z) 2 + - + 
Tm Dx Tm Dx 

b Po b 
(Txz = - · Exz 

Uo 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 

(141) 

(142) 

Insertion of z = H into the expressions for atz, atz, and a~z verifies that the boundary conditions 
(84) are indeed fulfilled, since 2po = CTbo ·II, Eq. (79). 

19 Quadrantal solution for semi-infinite space 

The total solution for the quadmntal, instantaneous heat source (6) in the semi-infinite space 
-oo < z < H (index qs), is obtained from the solution of the infinite problem -oo < z < oo 
(index qi), the mirror solution with the quadrantal heat source at the plane z = 2H (index m), 
and the boundary solution to correct for the boundary conditions at z = H (index b ). We have 
for example: 
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qs ( _ t) _ qi ( ~ t) + mb ( , ~) u x,y,£, - u x,y,-", u x,y,,., (143) 

Here, the index mb stands for the sum of tli<' minnr and boundary solutions: 

(144) 

All components of the displacement, strain, and stress fields are obtained by formulas of the 
above type. We have for any component f of these three fields: 

rs(x,y,z,t) = ri(x,y,z,t)+ fmb(x,y,z) 

f = u, V, w, Exx, Eyy, Czz, Exy, Cxz, Cyz, CTxx, CTyy, CTzz, CTxy, CTxz, or CTyz (145) 

The total solution qs is in this way separated into a time-dependent and time-independent part, 
with the index qi and mb, respectively. This separation will simplify time integration in Section 
20. 

The expressions for the three components of the solution (with index qi, m, and b) contain 
some secondary quantities. The quantities defined in Eqs. (51), (8), (72), and (129) will be used: 

A( ) f ( r ) -(r2-p2)/(4at) erf(p/y'4at) 
p, r, t = er y4at - r · e · p p = x, y 

e0 1 ( x ) ( y ) ( z 2 
) T9;(x,y,z,t)=-•--,==•erf -- •crf -- -exp --

pc ./4'iwt ~ y'4at 4at 

1 + v eoa 
Uo=--·

l - v 1rpc 

E E eoa 
Po=--•uo=--·-

l + v l - v 1rpc 

Tm= Jx2 + y2 + (2H - z)2 r = Jx2 + y2 + z2 

Dx = x2 + (2H - z)2 Dy = y2 + (2Il - z)2 

We will also use the new quautitics /Jx a11d JJ!I µ;ivc11 by: 

B = 2(H - z)(2H - z) (~ + 2_) 
Y r2 D 

m Y 

(146) 

(147) 

(148) 

The displacement is given by Eqs. ( 46), (71) and (130)-(132). The time-dependent part of 
the displacements is, Eqs. ( 46): 

, 1l/,/4al, crf(y8) .-(r'- 2)s2 uq'(x,y,z,t)=-uo ---•(' Y ds 
0 s 

11/,J,w, f( ·) qi( ) er xs -(r2-x2)82d v x,y,z,t = -uo --- ·e s 
0 S 

. f 1/..j:w, 2 2 

wq'(x, y, z, t) = uo.Jiz Jo erf(xs) · erf(ys) • e-z s ds (149) 



The time-independent part of the displacements is obtained from the mirror and boundary 
solutions (index mb). We have from Eqs. (71) and (130-132): 

umb(x, Y, z) = uo [- (~ _ 2v) In (-Tm_+_y) + _2(_H_-_z_). _Y(_2_H_-_z_)] 
2 Tm - Y Tm Dx 

vmb(x, Y, z) = uo [- (~ _ 2v) In (-Tm_+_x) + _2('--H_-_z-'-). _x('-2_H_-_z-'-)] 
2 Tm - X Tm Dy 

b [ ( xy ) 2(H-z) (xy xy)] wm (x, y, z) = uo (3 - 4v) arctan (2H _ z)Tm + Tm Dx + Dy (150) 

The strain field is given by Eqs. (50), (73) and (133-138). The time-dependent part of the 
displacements is, Eqs. (50): 

qi _ uo . xy . ( ) 
E xx - 2 2 A y' T' t 

r X + Z 

qi _ uo xy A( ) Eyy - - · 2 2 • x, T, t 
T y + z 

qi l + v uo [ xy xy ] Ezz=--a·Tq;(x,y,z,t)-- 2 2 -A(y,T,t)+ 2 2 ·A(x,T,t) 
l-v T x +z y +z 

qi _ uo yz ( ) Exz - - . 2 2 • A Y, T, t 
T X + Z 

qi _ u0 xz A( ) Eyz - - · 2 2 • x, T, t 
T y + z 

(151) 

The time-independent components of the strain field arc from Eqs. (73) and (133-138): 

mb Uo xy 
E = - · - (3 - 4v - B ) xx Tm Dx x 

mb uo xy 
E = - · - (3 - 4v - B ) 

YY Tm Dy y 

mb uo [ xy xy ] Ezz = - -D (1 - 4v +Bx)+ -1-(1 - 4v + By) 
Tm X )y 

mb _ uo [2(H - z)(2Il - z) _, ] 
Exy - 2 -~+'1v 

Tm Tm 

mb = _ uo [y(4H - 3z) _ y(21I - z) . B ] 
Exz D ]) x Tm x x 

mb = _ uo [x(4H - 3z) _ x(2/I - z) . IJ l 
Eyz T D I) Y 

m y y 
(152) 

The stress field is given by Eqs. (52), (7-1) and ( I :~9-142). The time-dependent part is given 
by Eqs. (52): 

(}"qi 
XX 

Po 
T 

/Y 2 ·A(y,T,t)- Ea -1~i(x,y,z,t) 
x +z 1-v 

qi Po xy A( ) Ea rl, ( ) 
O" =-· 2 2 · x,T,t ---· qix,y,z,t 

yy T y + Z 1 - V 

2,1 



qi _ Po [ x y x y ] 
azz - -- 2 2 • A(y,r,t) + 2 2 • A(x,r,t) 

r x +z y +z 

qi _ Po yz A( ) 
axz--· 2 2· y,r,t 

T X + Z 

qi - Po xz A( ) 
ayz - - · 2 2 · x, r, t 

r y + z 

The time-independent components of the stress field are from Eqs. (74) and (139-142): 

a1;} = Po [xy (3 - Bx)+ 4v xyl 
Tm Dx Dy 

mb _ p0 [2(H - z)(2H - z) _ ·> 11 ]· 
axy - 2 •> + v 

Tm Tm 

amb =_Po . [x(4H - 3z) _ x(2H - z). B l 
yz r D D Y 

m Y Y 

The shear strains and stresses differ only by the factors u0 and p0 • 

20 Time-dependent heat source 

(153) 

(154) 

Until now the heat emission e0 (J/m2) ha.s bee11 instantaneous (at t = 0). Although all the 

components of the displacement, strain, and stress fields of the total quadrantal solution have 
been derived from a temperature field caused by an instantaneous heat emission, it is fairly easy 
to change from this instantaneous case to any time-dependent heat emission. 

20.1 General formulas for quadrantal solution 

Let q(t) (W /m2) be any time-dependent hca.t source. We want the solution at the time t. The 
heat emission during a time increment dt' is q( l') · di.'. The response to this instantaneous heat 
source is given by our solution taken at the time l - t'. We have to multiply the solution by 
q(t')dt' / e0 , since the instantaneous solution ha.s the heat emission e0 . The total solution at t is 
obtained by integration over the interval O < t' < t. 

Consider as an example the stress component axx· We have for any time-dependent heat 
source q(t): 

qq ( t) -1t q(t') qs ( t t')dt' <Jxx X, Y, z, - -- . <Jxx X, Y, z, -
o eo 

(155) 

Here, the upper index qq refers to quadrantal solution for a heat source q(t), while index qs refers 
to the quadrantal solution for the i11sta.11t.a.11<•011s heat source in the semi-infinite space. 



The above type of superposition is valid for all components of the displacement, strain and 
stress fields. It is often called Duhamel's theorem, Carslaw and Jaeger (1959). The function 
q(t)/e0 enters into the Duhamel integral. We introduce a new notation for this function: 

q(t) = eo · q(t) (156) 

The constant e0 ( J /m2 ) cancels in the Duhamel integrals of the type (155) since the solution 
(with index qs) is proportional to e0 . The value of eo becomes redundant, and it may be chosen 
at will (eo f; 0). The time-dependent part q(t) has the dimension 1/s. 

Let f denote any component of the displacement, strain field or stress field. The Duhamel 
integral involves fqs = ri + fmb, Eq. (145). The second part is independent of time. We have 
the general formula: 

rq(x,y,z,t) = lot q(t') · ri(x,y,z,t - t')dt + Iq(t) · fmb(x,y,z) 

f = u, v, w, Exx, Eyy, £zz, Exy, Exz, Eyz, CTxx, CTyy, a22 , CTxy, CTxz, or CTyz (157) 

The expressions for ri and fmb are given by (149-154). The integral of q(t') is introduced: 

lq(t) = t q(t')dt' = _!._ t q(t')dt' 
lo eo lo 

(158) 

20.2 Time integrals 

The time t occurs in the factor Iq(t) of the second part in Eq. (157) and in the first integral. 
The displacements are treated below. For the components of the strain and stress fields, we get 
integrals of q(t') times the time-dependent factors in the formulas (151) and (153) for strain and 
stress. The following integrals are needed: 

lqe(r, t) = t q(t') · erf ( r ) dt' 
lo J4a(l - l') 

(159) 

lqA(x, r, t) = lot ij(t') · A (x, r, t - t') dt' (160) 

lqA(y,r,t) = lot ij(t') · A (y,r,t - t') dt' (161) 

( ) it - I 1 + V ( ') I I9r x, y, z, t = q(t) ·--a· Tq; x, y, z, t - t dt 
0 1- V 

(162) 

The integrals l 9A(x, r, t) and lqA(Y, r, t) differ only by the first argument. 
dimensionless. 

All the integrals are 

The integral involving A, (146), may be written: 

r it ( ,.2 _ p2 ) ( p ) 
l 9A(P, r, t) = lqe(r, t) - - q(t') · exp - ( ') · erf J ( dt' 

p o 4a t - t 4a t - t') 
p = x, y (163) 

The integral involving T9;, (146), may be written: 

q • Uoy 7r X y -z 1 
I x z t = erf erf ex dt t -(t') r,;; ( ) ( ) ( 2 ) 
qT( 'Y, ' ) l J4a(t - t') J4a(l - t') J4a(t - t') p 4a(t - t') 

(164) 

The above integrals are simplified somewhat with the following substitution: 
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Then we get: 

I l t-t =--
4as2 

dt' = _!!!_ 
2as3 

!,= crf(rs) 
Iqe(r, t) = q[t - 1/( 4as2)] · 3 <ls 

1/-1",w 2as 

r 1,= 2 ( 2 2) 2 erf(ps) 
IqA(P, r, t) = Iqe(r, t) - - q[t - 1/( 4as )] · e- r -p s · 3 <ls 

p 1/-1",w 2as 

!,= 2 uofo 2 2 
Iqr(x,y,z,t)= q[t-l/(4as )]•--2 ·erf(xs)·erf(ys)·e-z s ds 

1/-ffa'i 2as 

20.3 Displacement 

(165) 

(166) 

p = x, y (167) 

(168) 

The three displacement components are obtained by insertion of Eqs. (149) and (150) in Eq. (157). 
For the u-component we have: 

r ( r1 1✓4a(t-t') erf(ys) 2 2 2 ) 
uqq = -uo lo q(t') lo 

8 
• e-(r -y )s ds dt' + Iq(t) • umb(x, y, z) (169) 

The double integral may be transformed into a single integral by partial integration in t'. The 
integral of q is lq, Eq. (158). We have: 

I t' • erf · ex - ---dt' it ( y ) ( r2 _ y2 ) 1 
o q( ) J4a(t - t') p 4a(t - t') 2(t - t') 

(170) 

Insertion oft' = t in the first part gives the first infinite integral in Eq. (57). In the second 
integral we use the substitution (165). The v-componcnt is obtained in the same way (x and y 
change place). The double integral for w is in the same way reduced to a single integral by a 
partial integration in t'. Here the second infinite integral in (57) is used. We get the following 
general formulas for the displacement: 

(171) 

100 2 erf(xs) ( 2 2) 2 + uo lq[t - l/(4as )] • -'---'- • e- r -x s ds 
1/-ffa'i S 

(172) 
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Here, Iq(t) is defined by Eq. (158), u 0 by Eq. (146), and umb, vmb and wmb by Eqs. (150). 

20.4 Strain field 

(173) 

The six components of the strain field are obtained by insertion of Eqs. ( 151) and (152) in 
Eq. (157). The time integrals are given in Subsection 20.2. We have: 

qq _ uo xy ( ) ( ) mb( ) Exx - - · 2 2 ·lqA y,r,t +Iq t ·Exx x,y,z 
T X + Z 

qq _ Uo xy ( ) ( ) mb( ) Eyy - - · 2 2 · IqA x, r, t + Iq t · Eyy x, y, z 
r y + z 

qq _ uo yz I ( ) 1 ( ) 11,b( ) Exz--· 2 2 · qAY,r,t + ql ·Eu x,y,z 
T X + Z 

qq _ uo xz ( ) ( ) mb( ) Eyz - - · 2 2 ·lqA x,r,t + Iq t ·Eyz x,y,z 
r y + z 

(174) 

Here, lqA(Y, r, t) is given by Eq. (163), Iqr(x, y, z, t) by Eq. (164), Iq(t) by Eq. (158), lqe by 
(159) and E~b(x,y,z) by Eqs. (152). 

20.5 Stress field 

The six components of the stress field are obtained by insertion of Eqs. (153) and (154) in 
Eq. (157). 

Po (jqq = - . 
XX T 

qq _ Po (j - - . xz r 

xy E mb 
2 2 · IqA(Y, r, t) - -- · Iqr(x, y, z, t) + Iq(t) · axx (x, y, z) 

x +z l+v 

qq _ Po xz ( ) ( ) mb( ) (jyz - - · 2 2 ·lqA x,r,t + lq t •(jyz x,y,z 
r y + z 

(175) 

Here, IqA(y,r,t) is given by Eq. (lG:!), l,i'f'(:i:,y,z,l) by Eq. (164), lq(t) by Eq. (158), Iqe by 
(159) and a~b(x,y,z) by Eqs. (1.54). 
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20.6 General formulas for rectangular heat source 

The solution for any time-dependent heat source q(t) (W /m2 ) in the rectangular area -L < x < 
L, -B < y < B, z = 0 in the semi-infinite space -oo < z < JI is obtained by superposition of 
four quadrantal solutions as described in Section :L We have in accordance with Eq. (13): 

( ) ~ ~ nxny fqq( ) J x,y,z,t = L..,, L..,, - 4-- x+nxL,y+nyB,z,t 
nx=±l ny=±l 

f = U, V, W, Exx, Eyy, Ezz, Exy, Exz, Eyz, axx, ayy, azz, axy, axz, or ayz (176) 

The summation indices nx and ny assume the values + 1 and·- 1 only. 

21 Exponentially decaying heat source 

Let us now consider the case when q(t) consists of a single exponential: 

(177) 

The amount of heat emission until time l is: 

it q(t')dt' = q1t1 • (1 - e-t/ti) J/m2 (178) 

The total amount of heat emitted until t = oo is q1t 1 (t 1 > 0). 

21.1 Time integrals 

The heat source function q( t) is: 

ij(t) = q(t) = q1 . e-t/t 1 = q1l1 . _!_. e-t/t 1 

eo eo eo l 1 
( 1/s) (179) 

The integral of q(t') becomes: 

(180) 

The integrals (159), (163) and (164) become: 

(181) 

I ( · 1) - q1t1 lot 1 -t'/t1 A( ')d I eA p,r,t, - -- · -e · p,r,t - t t 
eo o t1 

p = x, y (182) 

q1t1 ltl -t'/t I+v '' Ier(x,y,z,t;l)= --· -e 1 ·--a·Tqi(x,y,z,t-t)dt 
eo o t1 1 - v 

(183) 

The parameter 1 in the argument list of the four integrals above denotes that the exponential 
(177) with the decay time t 1 and the amplitude q1 is involved. 

The above integrals get a somewhat simpler structure after the following variable substitu
tion: 

s= dt' = -2t 1sds (184) 
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Eqs.(181), (182), and (183) become after this substitution: 

q1 t1 1.Jtit; I 2 ( r ) lee(r, t; 1) = - · e-t ti+s · erf - 2sds 
~ o s~ . 

(185) 

p= x, y (186) 

Here, we have introduced the length: 

(188) 

The first part of leA is the same integral as /,,,. 

21.2 Displacement 

The displacement components are given by Eqs. (171), (172), and (173): 

qe( . ) _ ( . ) [ Uo (r + Y) mb( )] u x,y,z,t,l -le t,l · - 2 In r-y +u x,y,z + 

l= 2 erf(ys) ( 2 2) 2 + uo Ic[l - 1/(4as ); 1] · --- · e- r -y s ds 
I/./4ai. S 

(189) 

l= 2 erf(xs) ( 2 2) 2 
+uo Ie[t-1/(4as );l]----e-r -x s ds 

1/./4ai. S 
(190) 

The first factor le in the integrals becomes: 

(192) 

21.3 Strain field 

The components of the strain field caused by an exponentially decaying, quadrantal heat source 
become according to Eqs. (174): 

qe ( . ) _ UQ xy [ ( . ) J ( . ) mb( ) E xx x, y, z, t, l - - · 2 2 · c A y, r, t, l + e t, l · E xx X, y, z 
r X + Z 

qe ( • ) _ uo xy ( . ) ( . ) mb( ) 
Eyy x, y, z, t, l - - · 2 2 • feA X, r, l, 1 + le t, l · Eyy x, y, Z 

r y + z 
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qe ( . ) _ Uo [ xy I ( . ) xy ( . )] Ezz x,y,z,t,l - -- 2 2 · eA y,r,t,l + 2 2 ·IeA x,r,t,l + 
r x +z y +z 

qe ( . ) _ Uo yz I ( . ) I ( . ) mb( ) Exz x,y,z,t,l - - · 2 2 • eA y,r,t,l + e t,l ·Exz x,y,z 
r X + Z 

qe ( . l) _ Uo X z I ( . ) I ( . ) mb( ) Eyz x,y,z,t, - - · 2 2 · eA x,r,t,l + e t,l ·Eyz x,y,z 
r y + z 

(193) 

21.4 Stress field 

The components of the stress field caused by an exponentially decaying, quadrantal heat source 
become according to Eqs. (175): 

qe ( . l) _ Po xy E mb CTxxx,y,z,t, --· 2 2 •feA(y,r,l;l)---•feT(x,y,z,t;l)+Ie(t;l)•crxx(x,y,z) 
r x+z l+v 

qe( · l) - Po xy I ( . ) E I ( . ) I ( . ) mb( ) CTYY x,y,z,t, - - · 2 2 • eA x,r,l,l - -- · eT x,y,z,t,l + e t,l ·CTyy x,y,z 
r y+z I+v 

crf!(x,y,z,t;l) = _Po [ 2 xy 2 ·IeA(y,r,t;l)+ 2 xy 2 ·IeA(x,r,t;l)] +le(t;l)•cr1;}(x,y,z) 
r x +z y +z 

cri~(x, y, z, t; 1) = Po · 2 yz 2 • IeA(Y, r, t; 1) + le(t; 1) · cr';/(x, y, z) 
r X + Z 

qe( · l) _ Po XZ J ( . ) [ ( . ) mb( ) C1yz X, Y, z, t, - - · 2 2 • cA X, r, l, I + c l, 1 · C1yz x, y, Z 
r y + z 

21.5 Sum of exponentials 

Let us now consider the case when q(t) consists of a sum of exponentials: 

q(t) = I: qj. e-t/tj 

j 

(194) 

(195) 

The solution for this case is readily obtai nc<l by superposition. We just add the solutions for q1 , 

t1, for q2, t2, and so on. For example, the strain component Exx for the quadrantal heat source 
containing J exponentials is: 

J . 

Exx(x, Y, z, t) = L [uo · 2 xy 2 • leA(Y, r, t;j) + Ie(t;j) · t:7:}(x, y, z)] 
j=l r X + Z 

or, since the summation in j only involves the time-dependent integrals: 

J J 
Uo xy ~ · mb ~ · 

Exx(x,y,z,t)=-· 2 2 ·L_;lcA(Y,r,i;J)+Exx(x,y,z)·L,;Ie(t;J) 
r x +z . 1 • 1 J= J= 

(196) 

The choice of the basic heat emission co docs not matter ( eo i' 0). The factor eo occurs in 
uo and in the integrals Ie, IeA, fer and lee· It cancels in the formulas of Subsections 20.2-4. 
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21.6 General solution for rectangular, exponentially decaying heat source 

The above solution is valid for a quadrantal, exponentially decaying heat source, q(t) = q1 -e-t/ti. 

The solution for a rectangular heat source is obtained by superposition of four quadrantal 
solutions with x replaced by x ± L and y by y ± B. See Section 3 and in particular Eqs. (11) 
and (12). We have for any component f of the strain and stress ( and displacement) fields: 

J(x, Y, z, t) = 0.25 [Jqe(x + L, y + B, z, t; 1) - re( x + L, y - B, z, t; 1 )+ 

f = U, V, W, Exx, Eyy, [zz, Exy, Exz, Eyz, Uxx, Uyy, (Jzz, Uxy, Uxz, or Uyz (197) 

Here, the displacement, strain and stress components ( with upper index qe) are given by 
Eqs.(189-191), (193) and (194), respectively. The integrals lee, leA and leT in the formulas 
are given by Eqs. (185-187). The integral le is given by Eq. (180), and the constants u0 and p0 

by Eq. (146). The time-independent displa ... ement, strain and stress components, umb etc., E~b 

and u~b, are defined by Eqs. (150), (152) and (154). The solution can be rewritten using the 
notation from Eq. (13): 

f( ) _ """" """" nxny fqe( . B . ) x,y,z,t - L..,, L..,, - 4-- x+nxL,y+ny ,z,t,l 
nx=±I ny=±l 

(198) 

This solution concerns a single exponential heat source q(t) = q1 • e-t/ti, Eq. (177). The 
solution for a sum of exponential heat sources, Eq. (195), is obtained by adding the above type 
of solution for each component using the different constants qj and lj ( and dj = J4ati). The 
solution for a sum of J exponentially deca.ying heat sources in a semi-infinite region is: 

J 

f( ) _ """" """" """" nxny fqe( .. ) x,y,z,t -L..,, L..,, L..,, --· x+nxL,y+nyB,z,t,J 
j=l n.,,=±1 ny=±l 4 

f = U, V, W, Exx, Eyy, Czz, Exy, Exz, Eyz, Uxx, Uyy, Uzz, <Yxy, Clxz, Or Uyz (199) 

22 The complete solution 

We will in this section summarize the complete solution for a sum of exponential heat sources. 

22.1 Problem and assumptions 

The displacement u = (u,v,w) satisfies Na.vier's equation (2) in a semi-infinite, linearly elastic, 

isotropic, homogeneous medium: 

e='v•u 

-00 < X < 00 -oo<y<oo -oo<z<H (200) 

The temperature field T(x, y, z, t) is caused by a. time-dependent heat source q(t) (W /m2 ) over 
a rectangular area: -L < x < L, -B < y < B, z = 0. The heat is emitted from the start t = 0. 
The heat source q( t) consists of a sum of J exponentials: 
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J 

q(t) = :z= qj. e-t/t; 
j=l 

The decay time constants lj arc any positive numbers. 

(201) 

The solution (u,Exx,axx .. . ) shall tend to zero at infinity ( Jx 2 + y2 -+ oo or z-+ -oo). The 

three stress components O"xz, O'yz, and O'zz at the ground surface z = H are zero. We have the 

boundary conditions, (5): 

O'zz(x, y, H, t) = 0 O'zx(x, y, H, t) = 0 O'zy(x, Y, H, t) = 0 (202) 

The temperature T is zero at the ground surface, Eq. (61). 
The above problem is solved in six steps described in Section 24. One main assumption is 

made in order to simplify the solving process. The assumption is that the far-field approximation 

of the quadrantal solution can be used at the ground surface. This is the case with good accuracy 

when t satisfies Eq. (63): 

H2 
t < - (203) 

16a 

In the KBS-3 example, t must be less than 300 years (a= l.62·10-6 m2 /s, H = 500 m), Eq. (68). 

After about 300 years the solution at the surface is disturbed. The disturbance will increase at 

the ground surface and will move deeper into the medium. The solution at the repository level 

is valid if: 

H2 
t<-

4a 
(204) 

It will take four times longer for the disturbance to reach the repository level (roughly 1200 

years) than the ground surface. The solution is totally incorrect for large times (c::::10,000). 

22.2 Parameters and auxiliary functions 

The thermal and elastic properties of the rock are given by the volumetric heat capacity pc 

(J/m3K), the thermal diffusivity a (m/s), the coefficient of linear thermal expansion n: (1/K), 

Poisson's ratio 11 (-), and Young's modulus /~' (Pa). The length of the sides of the rectangular 

repository are given by 2L (m) and 2B (rn), a.nd the repository is situated at the distance H (m) 

under the ground surface in the plane z = 0. The heat emission of component j is described by 

the time constant tj (s) and strength qj (W /m2 ). The value of e0 may be chosen at will. Here, 

it is redundant. 
The following parameters and auxiliary functions are used in the complete solution, Eqs. (146-

148): 

1 + v eoa 
Uo=--·-

1 - II 1rpc 

E E eoa 
Po=--•uo=--·-

l + 11 l - 11 1r pc 

rm = Jx2 + y2 + (2I/ - z)2 r=Jx2+y2+z2 

Dx = x 2 + (2H - z)2 Dy = y2 + (2Il - z) 2 

Bx= 2(H - z)(2H - z) (r~ + ~x) 

By= 2(H - z)(2H - z) (r~ + ~Y) 



(205) 

22.3 Time integrals 

The following dimensionless integrals are used in the final solution, Eqs. (180), (185), (186) and, 
(187): 

(206) 

Iee(T,t;j)=_l_J_· e-t/t;+s ·erf - 2sds q ·t' lfft; . 2 ( T ) 

eo o sdj 
(207) 

IeA(P,T,t;J) = _l_J_ · e-t/t;+s · erf - - - ·exp ------=-- ·erf - 2sds . q·f · 1./t[t; . 2 [ ( T ) T ( T
2 

- p2
) ( p )] 

eo o sd· p s2& sd· J J J 

p = x, y 

q ·t · uo.,/i lfft; 2 ( x ) ( y ) ( z2 
) Ier(x,y,z,t;j) = _l_J_ · -- e-t/t1 +•• erf - crf - exp --- 2ds 

eo d · o sd · sd · s2 d2 
J J J J 

22.4 General formula for the solution 

The solution is given by the general formula, (199): 

J 

f(x,y,z,t)=I: L L nxny_re(x+nxL,y+nyB,z,t;j) 
j=l n.x=±l ny=±l 4 

The three displacement components are obtained for: 

J = u, v or w 

The six components of the strain field are obtained for: 

f = Exx, Eyy, Ezz, Exy, Exz or Eyz 

The six components of the stress field are obtained for: 

22.5 Displacement 

(208) 

(209) 

(210) 

(211) 

(212) 

(213) 

The three components of the displacement field for the quadrantal heat source qj•e-t/ti are given 
by Eqs. (189-191). Inserting the expressions (150) for the mb part, we get the following final 
explicit formulas: 

qe .. _ .. Uo [ (T + Y) (Tm+ y) 4y (H - z)(2H - z)] 
u (x,y,z,t,J)-Ie(t,J)- -ln -- -(3-4v)ln +-· 2 ( H )2 + 

2 T - y Tm - y Tm X + 2 - Z 

100 2 crf(ys) ( 2 2) 2 + Uo Ie[t - l/(4as );j] · -- · e- r -y 5 ds 
1/✓,w, S 

(214) 

. uo [ (r + x) (Tm+ x) 4x (H - z)(2H - z)] vqe(x,y,z,t;J)=le(t;j)- -In -- -(3-4v)ln -- +-· 2 (2H )2 + 
2 T - X Tm - X Tm y + - Z 
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Joo 2 erf(xs) ( 2 2) 2 + Uo Ie[t - l/(4as );j] · --- · e- r -x s ds 
1/✓,w. S 

(215) 

wqe(x,y,z,t;j) = Ie(t;j)uo [arctan (xy) + (3 - 4v)arctan (( xy) ) + 
ZT 2II - z Tm 

2xy ( H - z Il - z )] +- -----+----- -
Tm x2 + (2H - z) 2 y2 + (2H - z) 2 

uozfi Ie[t - l/(4as2);j] · erf(xs) · erf(ys) · e-z s ds Joo 2 2 

1/✓,r;i 
(216) 

22.6 Strains 

The six components of the strain field for the quadrantal heat source qre-t/tj are given by 

Eqs. (193): 

qe ( . ") _ Uo xy I ( . ") I ( .. ) mb( ) 
C:xx x,y,z,t,J - - · 2 2 · eA y,T,i,J + e i,J ·C:xx x,y,z 

r X + Z 

qe ( .. ) _ Uo xy l ( . ") I ( . •) mb( ) c:YY x,y,z,t,J - - · 2 2 · eA x,r,t,J + e t,J ·C:yy x,y,z 
r y + z 

qe ( .. ) _ uo [ xy I ( . ") xy I ( . ·)] 
C:zz x,y,z,t,J - -- 2 2 · eA y,T,i,J + 2 2 · eA x,T,t,J + 

r x +z y +z 

+ leT( x, y, z, l; j) + le( l; j) · c:1;'/( x, y, z) 

qe ( .. ) _ Uo yz J ( . ") I ( . ") mb( ) 
C:xz x,y,z,t,J - - · 2 2 • cA Y,T,t,J + e t,J ·Exz x,y,z 

T X + Z 

qe( ··)- uo_ XZ ·l ( .. ) I(··)· mb( ) 
C:yz x,y,z,t,J - 2 2 eA X,T,t,J + e t,J C:yz x,y,z 

T y + z 

qe . • _ Uo . · . • mb . 
cxy( X, Y, z, i, J) - - - · lee( T, t, J) + le( t, J) · C:xy (x, y, Z) 

T 

The time-independent parts c:~b are given by Eqs. ( 152): 

mb Uo xy 
c: (x y z) = - • - (3 - 411 - lJ ) 

xx ' , Tm Dx x 

mb uo xy 
c: (x y z) = - · - (3 - 4v - B ) YY ' ' D Y 

Tm y 

c:';'}(x, y, z) = ;: [ ;~ (1 - 4v +Bx)+;: (1- 4v + By)] 

mb( ) _ uo [2(II - z)(2II - z) 3 ] 
C:xy x, y, z - - 2 - + 4v 

Tm rm 

mb( ) __ Uo [y(4Il - 3z) _ y(2II - z). B ] 
C:xz x, Y, Z - D D x 

Tm x x 

mb( )- _ u0 [x(4Il-3z) _ x(2Il- z). l 
C:yz x,y,z - D D By 

Tm y y 
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22. 7 Stresses 

The six components of the stress field for the quadrantal heat source qj•e-tft1 are given by 
Eqs. (194) 

a-J,!(x,y,z,t;j) =Po· 2 xy 2 ·leA(Y,T,t;j)- -1 E ·ler(x,y,z,t;j)+Ie(t;j)·O";';\x,y,z) 
T x +z +v 

qe( . ") - Po xy I ( .. ) E I ( . ") I ( .. ) mb( ) O"yy x,y,z,t,J - - · 2 2 · eA x,T,t,J - -1-- · eT x,y,z,t,J + e t,J ·O"yy x,y,z 
T y +z +v 

qe( . ") - Po [ xy I ( t· ") xy I ( . ")] I ( . ") mb( ) O"zz x,y,z,t,J - -- 2 2 · eA Y,T, ,J + 2 2 · eA X,T,t,J + e t,J •O"zz x,y,z 
T x +z y +z 

qe( . ") _ Po yz l ( . ") I ( . ") mb( ) O"xz x,y,z,t,J - - · 2 2 • eA Y,T,t,J + e t,J ·O"xz x,y,z 
T X + Z 

qe( .. ) _ Po . xz . I ( .. ) I ( . ") . mb( ) O'yz x,y,z,t,J - 2 2 eA x,T,t,J + e t,J O"yz x,y,z 
T y + z 

qe ( . .) __ Po . I ( .. ) I ( . .) . mb( ) O" xy X, y, Z, t, J - ee T, t, J + e t, J 0-xy X, y, Z 
T 

(219) 

The time-independent parts O"~b are given by Eqs. ( 154 ): 

mb Po [xy xyl 0-xx (x,y,z) = Tm Dx (3 - Bx)+ 4v Dy 

mb Po [ xy . xy] O"YY (x,y,z) = Tm Dy (3 - By)+ 4v Dx 

mb Po [xy xy ] 
O"zz (x,y,z) = Tm Dx (l +Bx)+ Dy (l + By) 

mb( ) _ Po [2(Il - z)(2ll - z) _ 3 ] O"xy x,y,z - 2 + 4v 
Tm Tm 

mb( ) __ Po [y(4Il - 3z) _ y(2II - z). B] 
O"xz x,y,z - D D x 

Tm x x 

mb( ) _ _ Po [x(4H -3z) _ x(2II - z). B] 
O"yz x,y,z - D D Y 

Tm y y 
(220) 

23 Solution at the center 

In this section formulas for the solution at the center (x = 0, y = 0 and z = 0) of the rectan
gular heat source are given. The general formula for one exponentially decaying component is, 

Eq. (210) with J = 1: 

f(x,y,z,t)= L L nx4ny ·J9e(x+nxL,y+nyB,z,t;l) 
n:r=±l ny=±l 

(221) 
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At the center (x, y, z) = (0, 0, 0), the solution is given by: 

f(0,0,0,t) = 0.25 · [Jqe(L,B,0,t; 1)- re(-L,B,0,t; 1) 

- re ( L, - fl, 0, t; l) + re ( - L, - B, 0, t; 1)] 

23.1 Symmetry relations 

Now, if re is an odd function with respect to X and y, then the above formula becomes: 

or 

f(0,0,0,t) = 0.25 · [Jge(L,B,0,t; 1) + re(L,B,0,t; 1)+ 

+ re(L,B,0,t; 1) + re(L,B,0,t; 1)) 

J(0,0,0,t) = re(L,B,0,t;l) re odd in X and y 

(222) 

(223) 

For re = wge, Eq. (216), the function is odd in both x and y, and we have in accordance with 
Eq. (223): 

w(0,0,0,t) = wqe(L,B,0,t; I) (224) 

The function f(0, 0, 0, t) is zero as soon as re is even with respect to x or y: 

f(0,0,0,t) = 0 re even in X or y (225) 

For example, for re= uqe, Eq. (214), which is even in x and odd in y, the solution at the center 
becomes: 

u(0,0,0,t) = 0.25 · [uqe(L,B,0,t; 1)- uqe(L,B,0,t; 1)+ 

(226) 

The only nonzero component of the displacement at the center is w. 

From the expressions in Subsections 22.6 and 22.7 we see that all quadrantal shear strains 
and stresses are even in x or y, while the other three comp.onents are odd in x and y. The 
nonzero components of the strain and stress fields are Exx, Eyy, Ezz, O"xx, O"yy, and O"zz· 

23.2 Parameters at the center 

The geometrical parameters of (205) are ta.ken for x = y = z = 0. Using the index Oto denote 
values at the center, we have: 

Tmo = Jp + B 2 + 4ll2 ro = JL2 + B2 

Dyo = B 2 + 4ll 2 

2 ( 1 2 ) Bx0 = 4H - 2- + -
Tmo Dxo 

2 ( 1 2 ) Byo = 4ll - 2- + -D 
TmO yO 

(227) 

23.3 Time integrals at the center 

The dimensionless time integrals of Subsection 22.3 become for the solution at the center: 

(228) 
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q1 t1 i../t!ti t/t +s2 [ ( To ) To ( B 2 
) ( L ) l IeA(L,To,t;l)=-· e- 1 • erf - --•exp --- -erf - 2sds 

eo o sd1 L s2 di sd1 

q1t1 1../t!ti t/t +s2 [ ( To ) To ( L2 
) ( B )] IeA(B,To,t;l) = - · e- 1 • erf - - - •exp --- ·erf - 2sds 

eo o sd1 B s2di sd1 

(229) 

23.4 Displacement field at the center 

The displacement field for a rectangular, exponentially decaying heat source has a comparatively 
simple form at the center (x, y, z) = (0, 0, 0). Only the displacement component w is nonzero. 
The displacement components at the center become according to Eqs. (214)-(216), (223) and 
(225): 

u(0,0,0,t;l) = 0 v(0,0,0,l; 1) = 0 

The component uqe is even in x and the component vqe is odd in y, and consequently these 
components give no contribution to the overall displacement at the center, Eqs. (225) and (226). 
The component wqe is odd in both x and y and thus gives a contribution to w(0, 0, 0, t; 1) 
according to Eqs. (223) and (224). 

23.5 Strain field at the center 

The strain field for the rectangular, exponentially decaying heat source with a single component 
has a comparatively simple form at the center, (x,y,z) = (0,0,0). We have from Eqs. (217) and 

(218): 

u0 B u0 LB 
Exx(0,0, 0, t) = - · -L · leA(B, To, t; 1) + le(i; 1) · - · -D [3 - 4v - Bxo] 

~ ~o ~ 

u0 L uo LB 
Eyy(0,0,0, t) = - · B · leA(L, To, t; 1) + Ie(t; 1) · - · -D [3 - 4v - Byo] 

To TmO yO 

uo [B L ] czz(0, 0, 0, t) = - ro L · leA(JJ, To, t; l) + B · leA(L, To, t; 1) + leT(L, B, 0, t; 1)+ 

u0 [ LB LB l + Ie(t; 1) · - -D (1 - 4v + Bxo) + -D (1 - 4v + Byo) + 
Tmo 1:O yO 

Exy(0,0,0,t) = 0 Exz(0,0,0,t) = 0 Eyz(0, 0;0, t) = 0 (231) 

23.6 Stress field at the center 

The stress field for a rectangular, exponentially decaying heat source has, like the strain field, a 
simple form at the center (x, y, z) = (0, 0, 0). The stress components at the center become from 
Eqs. (219) and (220): 
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Po B E 
<Txx(0, 0, 0, t) = - · L · leA(B, ro, t; 1) - -1 - · Ier(L, B, 0, t; l)+ 

ro + v 

Po L E 
ayy(0,0,0,t) = - · - · IeA(L,ro,t; 1) - -- · Ier(L,B,0,t; l)+ 

ro B 1 + v 

Po [B L ] O"zz(0,0,0,t) = - ro L · IeA(B,ro,t; 1) + B · IeA(L,ro,t; 1) + 

Po [LB LB l + Ie(t; 1) · - D (1 + Bxo) + D (1 + Byo) 
Tmo xO yO 

O"xy(0,0,0,t) = 0 O"xz(0, 0, 0, t) = 0 ayz(0, 0, 0, t) = 0 (232) 

23. 7 Quadratic heat source area; L = B 

The solution at the center (0, 0, 0) is simplified somewhat for a quadratic heat source area; 
L = B. The integrals in Subsection 23.3 become with r0 = ./2,L: 

IeA(L, V2L, t; 1) = Ji (L/d1, t/t,) = 

qiti f...jtit; e-t/t1+s2 • [erf (-/2,L) - -12,. exp(-!!__) · erf (~)] · 2sds (233) 
eo lo sd1 df s2 sd1 

The integrals 11 and h depend of the dimensionless variables L/d1 and t/t1 • 

The displacements become according to Eqs. (230) and (227) with L = B: 

u(0,0,0,t;l) = 0 v(0,0,0,l; 1) = 0 

w(0,0,0,t;l)=uo[(3-4v)arctan( L2 
· )+ 

2Il J2L2 + 4H 2 

2H 2L2 l I + -;::::;;;;;::=== · --;=;;;====:::;: • ( t· 1) 
J2L2 +411 2 JL2+4JJ2 e ' 

The strain components become according to Eqs. (231) and (227) with L = B: 

uo 1 uo L 2 
Exx(0,0,0,t) = -L · M · Ii(L/d1,t/ti) + Ie(t; 1) · V 

V 2 2L2 + 4Jl2 L2 + 4Jl2 

. [ 3 - 4v - 4H2 ( 2L2 ; 4112 + L2 : 4Jl2)] 

Eyy(0,0,0,t) = Exx(0,0,0,t) 
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Exy(O, 0, 0, t) = 0 Exz(0,0,0,t) = 0 Eyz(0,0,0,t) = 0 

The stress components become according to Eqs. (232) and (227) with L = B: 

Po E 
O"xx(0,0,0,t)= In ·l1(L/d1,t/ti)---·I2(L/d1,t/t1)+ 

v2L 1 + v 

Po . 3 - 4J/2 4v · I t· l L2 
[ ( 1 2 ) ] 

+ ✓2L2 + 4H2 L2 + 4J/2 2L2 + 4J/2 + L2 + 4H2 + e( ' ) 

O"yy(0, 0, 0, t) = O"xx(0, 0, 0, t) 

Po r,:; / Po 2L2 
O"zz(0,0,0,t)=--L ·v2·li(L d1,t/ti)+---;:::=========::;: 2 2 

✓2L2 + 4H2 L + 4H 

. [1 + 4JI2 (2L2; 4112 + L2 +\J/2)]. Ie(t; 1) 

o-xy(0, 0, 0, t) = O O"xz(0, 0, 0, t) = 0 O"yz(0,0,0,t) = 0 

24 Survey of the solution procedure 

(238) 

(239) 

(240) 

(241) 

(242) 

(243) 

The solution presented in this report contains many parts, and it is quite intricate. A survey 
of the different steps in the analysis may be appropriate. The final solution is obtained by 
superposition involving six steps: 

1. Solution for an instantaneous, quadrantal heat source in an infinite region (Infinite solu
tion). See Sections 3-11. 

2. Solution for an instantaneous, quadrantal mirror heat source at z = 2H (Mirror solution). 
See Section 13. 

3. Solution of the remaining boundary-value problem in the semi-infinite region -oo < z < H 
(Boundary solution). See Sections 14-18. 

4. Solution for a single, exponentially decaying heat source via a Duhamel superposition of 
the instantaneous solution. Sec Sections 20-21. 

5. Solutions for a sum of exponentially decaying heat sources by superposition. See Subsection 
21.5. 

6. Solution for the rectangular heat source by superposition of four quadrantal solutions. See 
Subsection 21.6. 

The thermoelastic process is induced by a rectangular heat source. The problem involves the 
length and width of the rectangle. A crucial step to facilitate the analysis is the introduction 
of the quadrantal heat source, Eq. (G). The solution for the rectangular source is obtained by 
superposition of four quadrantal solutions, Eqs. (13) and (176). The length and width do not 
occur in the quadrantal problem. 

40 



The solution for the instantaneous, quadrantal heat source at z = 0, Eq. (6), in infinite space 
-oo < x,y,z < oo is presented in Sections 3-11. The temperature field Tq; from the quadrantal 

heat source, Eq. (8), is calculated in Section 3. The displacements induced by the instantaneous, 

quadrantal heat source are solutions to Navier's Eq. (2) with T = Tqi· A displacement potential 

<I> is used in the solution. The problem is reduced to the Poisson equation (16), where the 

Laplacian of <I> is equal to the temperature (times a constant). In Section 5, the problem is 

formulated in dimensionless form. The dimensionless problem for the instantaneous quadrantal 

heat source in infinite space does not involve any free dimensionless parameters. The solution 

<I>q depends only on the dimensionless spacial coordinates, Eq. (22). The time t only occurs in 

the form y'4at as a scale factor. The displacement potential <I>q is calculated in Section 6. It 

is given by a double integral of erf(r)/r, Eq. (41). The solution may be expressed as a single 

integral with a somewhat more complicated integrand involving powers, error functions and an 

exponential, Eq. ( 42). 
The three displacement components u, v and w are obtained by the first derivatives of the 

displacement potential. The final expressions for the displacement due to the quadrantal heat 

source in infinite space are Eqs. ( 46). The three single integrals must be evaluated numerically. 

The strains and stresses are obtained from second-order derivatives of the displacement potential. 

A gratifying fact is that the integrals may be evaluated by partial integrations. The final 

explicit expressions for strain and stress fields are Eqs. (50) and (52), respectively. The far-field 

approximation z' = z/,/4ai, ~ I is studied in Section 11. The solution is simplified considerably. 

The displacement, strain, and stress fields become time-independent, Eqs. (56), (58) and (59). 

The far-field approximation is valid with good accuracy for z' = z/v'4at > 2. 

The corrections to the solution in infinite space in order to satisfy the boundary conditions 

(5) at the ground surface are discussed in Section 12. The corrections are derived under the 

simplifying assumption that the far-field solution may be used at the ground surface, Eq. (63). 

(The conditions on the exact solution are discussed in Appendix 1.) The solution is valid 

everywhere fort < H 2 /(16a). With typical KBS-3 data (H = 500 m), the time limit becomes 

around 300 years. The error develops slowly from the ground surface. The solution is valid at 

the repository level z = 0 (and downwards) during a four times longer period (t < 1200 years). 

In the second step, a mirror instantaneous, quadrantal heat source at z = 2H is introduced, 

Eq. (69). The far-field approximation may be used. The mirror solution is given by Eqs. (71), 

(73) and (74) in Section 13. 
The quadrantal and mirror solutions are added. The boundary conditions are considered 

in Section 14. The three components of the stress field CTxz, CTyz, and CTzz, should all be zero 

at the ground surface z = H, Eqs. (5). The two shear stresses are zero because of symmetric 

heat sources at z = 0 and z = 2H. The normal stress CTzz is given by Eq. (76). The remaining 

problem for the instantaneous quadrantal heat source is to solve a boundary-value problem in 

the semi-infinite space -oo < z < H. There is a time-independent normal stress over the 

boundary, while the shear stresses are zero. 
This boundary value problem is studied in Sections 14-18. General formulas for the solution 

due to Hertz are given in Section 15. The solution is obtained by derivatives up to the third 

order of a certain potential X· This Hertzian potential is given by a double integral involving 

the prescribed normal stress over the boundary surface z = H, Eq. (90). We have succeeded in 

solving the quite intricate integral in the way described in Section 16. The beautiful formula 

(112) for x is obtained. The boundary problem is formulated and solved in the region O < z < oo. 

The resulting boundary solution (with index bO) is given in Appendix 2. The solution is then 

transformed, Eqs. (87-89), to the actual region -oo < z < H in Section 18. The total solution 

for the instantaneous quadrantal heat source is given by the sum the above three solutions. The 

complete result is given in Section 19. 
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The solution for any time-dependent quadrantal heat source q(t) (W/m2 ) in the semi-infinite 
space -oo < z < H is discussed in Section 20. The solution is obtained by a Duhamel integral 
involving q and the quadrantal solution, Eq. (157). The displacement is given by Eqs. (171-
173). It is noteworthy that only single integrals occur. The strain and stress fields are given 
by Eqs. (174) and (175). Finally, the solution for the rectangular heat source is obtained by 
superposition of four quadrantal solutions, Eqs. (176). 

The particular case of a single, exponentially decaying heat source, Eq. (177), is dealt with 
in Section 21. The solution is given in Subsections 21.1-4. The solution for a sum of exponential 
sources, Eq. (195), over the rectangular area is obtained by superposition of four quadrantal 
solutions, Eqs. (199). 

The complete solution for a sum of exponential heat sources is summarized in Section 22. 
The solution at the center (0,0,0) is of special interest. It is presented in detail in Section 

23. 
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Appendix 1. Conditions for solution for large times 

The solution presented above is derived under the assumption (63). This means that the far-field 
approximation of the quadrantal solution may be used at the ground surface. The temperature 
field caused by the heat source at z = 0 has not reached the ground surface z = H. We will 
here present the conditions on the solution without this restriction. 

We start as before with the basic quadrantal solution for an infinite medium. The total 
temperature at the boundary is zero. This means that we need a mirror heat source with the 
opposite sign at z = 2H. The source at z = 0, Eq. (6), and mirror source at z = 2H with 
opposite sign are given by our quadrantal solution minus the-same solution with z replaced by 
z-2H. 

The stress components from these two parts ( with upper index q- m) become at the ground 
surface: 

aJ;m(x, y, H, t) = 0 ~-~-= (244) 

aq-m(x H t) - 2po . yH . A' (-y- Jx2 + y2 + H2) (245) 
xz 'Y, ' - Jx2 + y2 + 112 x2 + JI2 -fiat' -fiat 

aq-m(x H t) - 2po . xll . A' (-x- Jx2 + y2 + H2) (246) 
yz ,Y, ' - Jx2 + y2 + Jl2 y2 + J[2 -fiat' -fiat 

Now , the normal stress vanishes, while the shear stresses from source and mirror source are 
equal. Here, A is defined by Eq. ( 48). 

The boundary solution shall satisfy the three above time-dependent boundary conditions. 
The total quadrantal solution consists of the basic quadrantal solution for infinite medium minus 
the same solution for the quadrantal heat source at z = 2H. The third part is the boundary 
solution for the above boundary conditions with nonzero shear stresses. 

Appendix 2. Boundary solution in z > 0 

The boundary solution for the region z > 0 is obtained by insertion of the derivatives of x from 
Section 17 in the formulas (91 ), (92) and (95). This solution is denoted by index bO. 

The three displacement components are from Eqs. (91), (114-115), (117), and (119-120): 

ubo = 2uo [...!._. y(z + II) _ l - 2v In (TH+ y)] 
TH x 2 + (z + JI)2 2 TH - y 

(247) 

(248) 

wbo = -2uo [T: (x2 + (:y+ JI)2 + y2 + (:y+ H)2) + 

+2(1 - v) arctan Cz + x1)TH)] (249) 

Here, we have also used that p0 = 21w0 , Eq. (;35). The strain field is given by Eqs. (92) and the 
derivatives (116-126): 

E~=2uo•2_· 2 ty H) 2 (l-2v-z(z+H)(i+ 2 (
2 H)2 )) (250) TH X + Z + TH X + Z + 
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bO • l xy ( ( 1 2 ) ) Eyy = 2u0 • - · 2 ( )2 1 - 2v - z(z + JI) 2 + 2 ( H)2 (251) 
rH y + z + II rH y + z + 

bO 1 [ xy ( ( 1 2 ) ) 
Ezz = 2uo. TH x2 + (z + Jf )2 1 - 2v + z(z + H) rJ.r + x2 + (z + H)2 + 

y2 + (:y+ H)2 ( 1 - 2v + z(z + H) ( rt + y2 + (: + H)2))] (252) 

Ebo = 2uo · _..!._ [ z( z + II) - 1 + 2v] 
xy TH TJ.r 

bO 1 yz ( 2 ( 1 2 ) ) 
Exz = 2uo. TH . x2 + (z + H)2 1 - (z + H) rJ.r + x2 + (z + H)2 

E = 2uo · - · 1 - z + II - + bO 1 XZ ( 2 ( 1 2 ) ) 
yz TH y2 + (z + Jl)2 ( ) TJ.r y2 + (z + H)2 

The stress field is given by Eqs. (95) and the derivatives (116-126): 

bO 1 [ xy ( ( 1 2 ) ) 
axx = 2po. rH x2 + (z + II)2 1 - z(z + H) r1 + x2 + (z + H)2 + 

2 xy ] 
+ v y2 + (z + H)2 

bO 1 [ xy ( ( 1 2 ) ) 
O'yy = 2po. rH y2 + (z + II)2 1 - z(z + II) r1 + y2 + (z + H)2 + 

2 xy ] 
+ v x2 + (z + Jl)2 

bO 1 [ xy ( ( 1 2 ) ) 
azz = 2po. TH x2 + (z + II)2 1 + z(z + II) rJI + x2 + (z + H)2 + 

bO Po bO 
(J'xz = - · Exz 

Uo 
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bO Po bO 
ayz = - . Eyz 

Uo 

(253) 

(254) 

(255) 

(256) 

(257) 

(259) 



Nomenclature 

The following abbreviations are used in the nomenclature list: 

b.s. 
comp. 
dim. 
displ. 
<list. 
exp.dee. 
h.s. 
inst. 
quad. 
rect. 
s-i.reg. 
t~d. 
t-i. 

a 
A'(x', r') 
A(p, r, t) 
B 
Bx 
Bxo 
By 
Byo 
C 

cp 
d-

J 

D 
D' 
Dx 
Dx0 
Dy 
Dyo 
e 
e 
eo 
eb 
ebo 
erf 
exp 
E 
H 
le 
lee 

boundary solution 
component(s) 
dimensionless 
displacement 
distance 
exponentially decaying 
heat source 
instantaneous 
quadrantal 
rectangular 
semi-infinite region 
time-dependent 
time-independent 

= >-./(pc), thermal diffusivity of the rock 
auxiliary function, Eq. ( 48) 
auxiliary function, Eq. (51), (p = x, y) 
length of the rect. h.s. in the y-direction 
auxiliary function, Eq. ( 147) 
auxiliary function, Eq. (227) 
auxiliary function, Eq. ( 148) 
auxiliary function, Eq. (227) 
specific heat capacity of the rock 
volumetric heat capacity of the rock 
= y"4aI;, Eq. (188) 
canister spacing in repository tunnels 
<list. between repository tunnels 
= x 2 + (2H - z)2 , auxiliary function, Eq. (129) 
= L2 + 4H2 , auxiliary function, Eq. {227) 
= y2 + (2H - z)2, auxiliary function, Eq. (129) 
= B2 + 4H2 , auxiliary function, Eq. (227) 
exponential function 
volume expansion, Eq. (2) 
inst. heat emission per unit area at t = 0, Eq. (6) 
volume expansion for the boundary solution, Eq. (83) 
volume expansion for the boundary solution, Eq. (85) 
error function, Eq. (9) 
exponential function 
Young's modulus, Eq. (-1) 
<list. from the h.s. to the ground surface 
time integral, Eq. (180) 
time integral, Eq. ( 185) 
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(m2 /s) 
(-) 
(-) 
(m) 
(-) 
(-) 
(-) 
(-) 
(J/kgK) 
(J/m3K) 
(m) 
(m) 
(m) 
(m2) 
(m2) 
(m2) 
(m2) 
(-) 
(-) 
(J/m2) 
(-) 
(-) 
(-) 
(-) 
(Pa) 
(m) 
(-) 
(-) 



feA 
fer 
Iq 

Iqe 

IqA 

lqT 

Ii 
h 
L 

Po 
q(t) 
q(t) 
q1 
qj 

ij( t) 

Tq 

Tqi 

u, v, w 
uq, vq, wq 

uqe' vqe' wqe 

ugi vqi wqi 
' ' uqq, vqq, wqq 

uqs' vqs' wqs 

umb Vmb Wmb 
' ' um, vm, Wm 

ub vb wb 
' ' 

u 
Uq 

Ub 

UbQ 

Uo 
x, y, z 
x' 
y' 
z' 

a 

Exx • • • 

time integral, Eq. (186) (-) 
time integral, Eq. (187) (-) 
time integral, Eq. (158) (-) 
time integral, Eq. (159) (-) 
time integral, Eq. (160) (-) 
time integral, Eq. (162) (-) 
time integral, Eq. (233) (-) 
time integral, Eq. (234) (-) 
length of the rect. h.s. in the x-direction (m) 
scale factor for stress comp., Eq. (35) (Pa·m) 
time-dependent h.s., Eq. (156) (W /m2) 

time-dependent heat emission per canister (W /m2 ) 

heat emission per unit area at t = 0 for comp. 1, Eq. (177) (W /m2 ) 

inst. heat emission per unit area at t = 0 for comp. j, Eq. (195) (W /m2 ) 

time-dependence of heat emission, Eq. (156) (s-1 ) 

= J x2 + y2 + z2 ( m) 
= JL2 + B 2 , Eq. (227) (m) 
= Jx 2 + y2 + (z + JI)2, Eq. (113) (m) 
= Jx 2 + y2 + H 2, Eq. (77) (m) 
= Jx 2 + y2 + (z - 2H)2, Eq. (72) (m) 
= JL2 + B 2 + 4ll2 , Eq. (227) (m) 
= r/v'4af, dim. r-coordinate (-) 
time (s) 
time-constant for component 1, Eq. (177) (s) 
time-constant for exponential component j, Eq. (195) (s) 
temperature field for the rect. h.s., Eq. (12) (K) 
dim. quad. inst. temp. field, Eq. (25) (-) 
quad. inst. temp. field, Eq. (8) (K) 
displ. comp. (m) 
dim. <lisp!. comp. (quad. inst. h.s.), Eq. (31) (-) 
displ. comp. (exp.dee. quad. inst. h.s. s-i.reg.), Eqs. (189-191) (m) 
t-d. displ. comp. (quad. inst. h.s.), Eq. (46) (m) 
displ. comp. (t-d. quad. inst. h.s. s-i.reg.), Eq. (157) (m) 
displ. comp. (quad. inst. h.s. s-i.reg.), Eq. (145) (m) 
t-i. displ. comp. (quad. inst. h.s.), Eq. (150) (m) 
displ. comp. (mirror h.s.), Eq. (71) (m) 
displ. comp. (boundary solution), Eq. (130) (m) 
displ., Eq. (15) (m) 
dim. displ., Eq. (30) (-) 
displ. for the boundary solution, Eq. (83) (m) 
displ. for the boundary solution, Eq. (85) (m) 
scale factor for <lisp!., Eq. (28) (m) 
Cartesian coordinates ( m) 
= x/v'4at,, dim. x-coordinate, Eq. (22) (-) 
= y/../4ai,, dim. y-coordinate, Eq. (22) (-) 
= z/.../4al dim. z-coordinate, Eq. (22) (-) 

coefficient of linear thermal expansion 
strain comp. 
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(1/K) 
(-) 



Ei;x · · · dim. strain comp. (quad. inst. h.s.), Eq. (33) 
t:i; ... strain comp. (exp.dee. quad. inst. h.s.), Eq. (193) 

qi 
Exx · · · t-d. strain comp. ( quad. inst. h.s.), Eq. (50) 

c:it ... strain comp. (t-d. quad. inst. h.s.), Eq. (157) 

Ei;~ . .. strain comp. ( quad. inst. h.s. s-i.reg), Eq. (145) 
mb 

Exx · · · t-i. strain comp. ( quad. inst. h.s.), Eq. (152) 
E;'x ... strain comp. (mirror h.s.), Eq. (73) 

b 
Exx • · · strain comp. (b.s.), Eq. (133) 

X Hertz' potential, Eq. (90) 
µ Shear modulus, Eq. ( 4) 
l/ Poisson 's ratio, Eq. ( 4) 
p density of the rock 

(jxx·•· stress comp. 

(j;x • · · dim. stress comp. ( quad. inst. h.s.), Eq. (36) 
(j;~ ... stress comp. (exp.dee. quad. inst. h.s.), Eq. (194) 

qi 
(jxx • · • t-d. stress comp. ( quad. inst. h.s.), Eq. (52) 
(jll ... stress comp. (t-d. qua.<l. inst. h.s.), Eq. (157) 

crf~ ... stress comp. (quad. inst. h.s. s-i.reg.), Eq. (145) 
mb 

O'xx · · · t-i. stress comp. (quad. inst. h.s.), Eq. (154) 

a:X ... stress comp. (mirror h.s.), Eq. (74) 
b 

O'xx • · · stress comp. (b.s.), Eq. (139) 
O"bQ scale factor for stress comp. at ground surface, Eq. (79) 
cr' b dim. stress comp. at ground surface, Eq. (80) 

I 
ab,max maximum dim. stress comp. at ground surface, Eq. (81) 

<P displ. potential, Eq. (15) 
<Pq dim. displ. potential, Eq. (27) 

A prime indicates that the quantity is dimensionless. 

List of indices 

q Dimensionless instantaneous quadrantal solution 

qi Infinite instantaneous quadrantal solution 

m Mirror solution 

b Boundary solution 

mb Sum of mirror and boundary solution 

qe Semi-infinite exponentially decaying, quadrantal solution 

qs Semi-infinite instantaneous quadrantal solution 

qq Semi-infinite time-dependent, quadrantal solution 
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(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(-) 
(kg/m3 ) 

(Pa) 
(-) 
(Pa) 
(Pa) 
(Pa) 
(Pa) 
(Pa) 
(Pa) 
(Pa) 
(Pa) 
(-) 
(-) 
(m2) 
(-) 
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