Sorption behavior of Np(V) onto clays from Russian and Indian deposits

Anna Romanchuk1, I.E. Vlasova1, P.K. Verma2, V.V. Krupskaya1,3, V.G. Petrov1, P.K. Mohapatra2, S.N. Kalmykov1

1Lomonosov Moscow State University
2Bhabha Atomic Research Centre. Mumbai, India
3Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Science, Moscow, Russia

romanchuk.anna@gmail.com
Clays samples

Khakassia Rajasthan Kutch

[Map showing locations of Khakassia, Rajasthan, and Kutch]
Characterization of clays
Characterization of clays
XRF: Elemental composition

<table>
<thead>
<tr>
<th>Sample</th>
<th>LOI</th>
<th>Na₂O</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>K₂O</th>
<th>CaO</th>
<th>TiO₂</th>
<th>MnO</th>
<th>Fe₂O₃</th>
<th>P₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajastan clay</td>
<td>20.06</td>
<td>1.15</td>
<td>4.64</td>
<td>16.28</td>
<td>35.12</td>
<td>0.30</td>
<td>6.67</td>
<td>3.09</td>
<td>0.16</td>
<td>12.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Kutch clay</td>
<td>21.43</td>
<td>0.72</td>
<td>2.02</td>
<td>12.33</td>
<td>42.52</td>
<td>0.11</td>
<td>2.77</td>
<td>1.42</td>
<td>0.19</td>
<td>15.58</td>
<td>0.27</td>
</tr>
<tr>
<td>Khakassia clay</td>
<td>12.74</td>
<td>2.98</td>
<td>2.48</td>
<td>15.19</td>
<td>58.36</td>
<td>0.97</td>
<td>3.05</td>
<td>0.63</td>
<td>0.09</td>
<td>3.42</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Characterization of clays

XRF: Elemental composition

<table>
<thead>
<tr>
<th>Sample</th>
<th>LOI</th>
<th>Na$_2$O</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>SiO$_2$</th>
<th>K$_2$O</th>
<th>CaO</th>
<th>TiO$_2$</th>
<th>MnO</th>
<th>Fe$_2$O$_3$</th>
<th>P$_2$O$_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajastan clay</td>
<td>20.06</td>
<td>1.15</td>
<td>4.64</td>
<td>16.28</td>
<td>35.12</td>
<td>0.30</td>
<td>6.67</td>
<td>3.09</td>
<td>0.16</td>
<td>12.27</td>
<td>0.11</td>
</tr>
<tr>
<td>Kutch clay</td>
<td>21.43</td>
<td>0.72</td>
<td>2.02</td>
<td>12.33</td>
<td>42.52</td>
<td>0.11</td>
<td>2.77</td>
<td>1.42</td>
<td>0.19</td>
<td>15.58</td>
<td>0.27</td>
</tr>
<tr>
<td>Khakassia clay</td>
<td>12.74</td>
<td>2.98</td>
<td>2.48</td>
<td>15.19</td>
<td>58.36</td>
<td>0.97</td>
<td>3.05</td>
<td>0.63</td>
<td>0.09</td>
<td>3.42</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Characterization of clays

XRD: Phase composition

<table>
<thead>
<tr>
<th>Clay Type</th>
<th>Smectite</th>
<th>Kaolinite</th>
<th>Quartz</th>
<th>Albite</th>
<th>Microcline</th>
<th>Orthoclase</th>
<th>Calcite</th>
<th>Dolomite</th>
<th>Gypsum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khakassia clay</td>
<td>66.0</td>
<td>1.3</td>
<td>16.9</td>
<td>6.6</td>
<td>3.7</td>
<td>1.6</td>
<td>2.6</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Rajasthan clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smectite</td>
<td>46.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illite-smectite MLM</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaolinite</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolomite</td>
<td>8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brushite</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatase</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amorphous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clay minerals:

- **Khakassia clay**: 67%
- **Rajasthan clay**: 69%
- **Kutch clay**: 76%
Characterization of clays
Mössbauer spectroscopy: Iron speciation

Khakassia clay

Rajasthan clay

Kutch clay

Fe(II): structural iron
Fe(III): structural iron and nanoparticles of goethite

Only Fe(III):
- structural iron,
- hematite (around 5%)
- Nanoparticles of goethite

$T = 77K$
Summary of characterization

Khakassia
- Na-Montmorillonite – 66%
- Goethite – around 1.5%
- No anatase
- SA=15 m²/g

Rajasthan
- Na-Montmorillonite – 47%
- Illite-smectite MLM – 8%
- Kaolinite – 14%
- nanoparticles of Goethite – 12%
- Hematite – 0.5%
- Anatase – 1.7%
- SA=50 m²/g

Kutch
- Ca-Montmorillonite – 76%
- nanoparticles of Goethite – 15%
- Hematite – 0.5%
- Anatase – 0.5%
- SA=115 m²/g
Sorption study
Kinetics of Np(V) sorption onto clay

- **I = 0.01 M NaClO₄**
 - **Kutch**
 - **Rajasthan**
 - **Khakassia**

- Steady state for Np(V) sorption onto clay in ~24 hours

- **I = 1 M NaClO₄**
 - **Kutch**
 - **Rajasthan**
 - **Khakassia**

✓ Sorption of Np(V) onto Khakassia clay is lower but faster
Np(V) sorption pH-edge
Khakassia clay

At pH > 6.5 sorption is not dependent on ionic strength – surface complexation is predominant mechanism of sorption

At pH < 6.5 sorption increase with decreasing ionic strength – ion exchange is predominant mechanism

[solid phase] = 0.5 g/L
[Np] = 4 \cdot 10^{-14} \text{ M}
Np(V) sorption pH-edge

Rajasthan clay

- In all pH range sorption is not dependent on ionic strength – surface complexation is predominant mechanism of sorption

- Sorption is higher than on Khakassia clay

[solid phase] = 0.5 g/L
[Np] = 4 \cdot 10^{-14} M
Np(V) sorption pH-edge
Kutch clay

Sorption is higher at I = 1M NaClO4

Ca-Montmorillonite influence???

[solid phase] = 0.5 g/L
[Np] = 4 \cdot 10^{-14} M
Kutch bentonite at 1M NaClO₄

Tubes were capped
Shaken for 1 day
Centrifuge for 20 min.
Separate the two phases

Modified Kutch bentonite

Further studies

- Characterization by XRD
- Np(V) sorption profile

Modified Kutch bentonite

Aqueous

Clay Colloids in Aqueous Systems, February 2016
Clay Colloids in Aqueous Systems, February 2016

XRD of Kutch and Modified bentonite

Kutch

- d : 15.2 Å

- d : 12.7 Å

Modified
Ca-form demonstrate lower sorption
Summary of sorption data

- Khakassia clay
- Rajasthan clay
- Kutch clay

![Sorption data graph](image)
Modeling
Thermodynamic modeling

- Mineral composition
- Surface properties for each component
- Equilibrium constant for sorption onto pure mineral

Component Additivity

NEA Sorption Project Phase II, 2005
Thermodynamic modeling

Component Additivity

Literature data

<table>
<thead>
<tr>
<th>Reaction</th>
<th>logK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\equiv\text{AIOH} + \text{NpO}_2^+ \rightarrow \equiv\text{AlONpO}_2 + \text{H}^+$</td>
<td>-4,55</td>
</tr>
<tr>
<td>$\equiv\text{AIOH} + \text{NpO}_2^+ + \text{H}_2\text{O} \rightarrow \equiv\text{AlONpO}_2\text{OH}^- + 2\text{H}^+$</td>
<td>-13,8</td>
</tr>
<tr>
<td>$\equiv\text{FeOH} + \text{NpO}_2^+ \rightarrow \equiv\text{FeONpO}_2 + \text{H}^+$</td>
<td>-3,32</td>
</tr>
<tr>
<td>$\equiv\text{TiOH} + \text{NpO}_2^+ \rightarrow \equiv\text{TiONpO}_2 + \text{H}^+$</td>
<td>-2,89</td>
</tr>
<tr>
<td>$\text{NpO}_2^+ + \text{X}^- \rightarrow \text{XNpO}_2$</td>
<td>-0,26</td>
</tr>
</tbody>
</table>
The same set of the equilibrium constants for different clays
[Np] 10^{-6} M

“Light” fraction

“Dark” fraction
α-track analysis images

Rajasthan clay
Summary

• Non-clay minerals can dramatically affect on radionuclides sorption onto clay
• Thermodynamic modeling with CA-approach can be used for modeling sorption onto clays

Thank you for your attention!
Mössbauer spectroscopy

Rajasthan clay

\(T = 300K \)

\(T = 77K \)